Suppr超能文献

多孔基底支撑的 POPC 双层膜:SiO2 型表面的羟基化和电荷密度的特殊影响。

POPC Bilayers Supported on Nanoporous Substrates: Specific Effects of Silica-Type Surface Hydroxylation and Charge Density.

机构信息

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida , Tampa, Florida 33620, United States.

Department of Physics, Illinois Institute of Technology , Chicago, Illinois 60616, United States.

出版信息

Langmuir. 2016 Jul 5;32(26):6766-74. doi: 10.1021/acs.langmuir.6b01155. Epub 2016 Jun 21.

Abstract

Recent advances in nanotechnology bring to the forefront a new class of extrinsic constraints for remodeling lipid bilayers. In this next-generation technology, membranes are supported over nanoporous substrates. The nanometer-sized pores in the substrate are too small for bilayers to follow the substrate topology; consequently, the bilayers hang over the pores. Experiments demonstrate that nanoporous substrates remodel lipid bilayers differently from continuous substrates. The underlying molecular mechanisms, however, remain largely undetermined. Here we use molecular dynamics (MD) simulations to probe the effects of silica-type hydroxylation and charge densities on adsorbed palmitoyl-oleoylphosphatidylcholine (POPC) bilayers. We find that a 50% porous substrate decorated with a surface density of 4.6 hydroxyls/nm(2) adsorbs a POPC bilayer at a distance of 4.5 Å, a result consistent with neutron reflectivity experiments conducted on topologically similar silica constructs under highly acidic conditions. Although such an adsorption distance suggests that the interaction between the bilayer and the substrate will be buffered by water molecules, we find that the substrate does interact directly with the bilayer. The substrate modifies several properties of the bilayer-it dampens transverse lipid fluctuations, reduces lipid diffusion rates, and modifies transverse charge densities significantly. Additionally, it affects lipid properties differently in the two leaflets. Compared to substrates functionalized with sparser surface hydroxylation densities, this substrate adheres to bilayers at smaller distances and also remodels POPC more extensively, suggesting a direct correspondence between substrate hydrophilicity and membrane properties. A partial deprotonation of surface hydroxyls, as expected of a silica substrate under mildly acidic conditions, however, produces an inverse effect: it increases the substrate-bilayer distance, which we attribute to the formation of an electric double layer over the negatively charged substrate, and restores, at least partially, leaflet asymmetry and headgroup orientations. Overall, this study highlights the intrinsic complexity of lipid-substrate interactions and suggests the prospect of making two surface attributes-dipole densities and charge densities-work antagonistically toward remodeling lipid bilayer properties.

摘要

最近纳米技术的进展为重塑脂质双层带来了一类新的外在约束。在这项新一代技术中,膜支撑在纳米多孔基质上。基质中的纳米级孔太小,双层无法遵循基质的拓扑结构;因此,双层悬在孔上。实验表明,纳米多孔基质对脂质双层的重塑与连续基质不同。然而,潜在的分子机制在很大程度上仍未确定。在这里,我们使用分子动力学(MD)模拟来探测硅烷型羟化和电荷密度对吸附的棕榈酰-油酰磷脂酰胆碱(POPC)双层的影响。我们发现,一个 50%多孔的基质,表面密度为 4.6 个羟/nm(2),在 4.5 Å 的距离处吸附 POPC 双层,这一结果与在高度酸性条件下进行的拓扑相似的硅石结构的中子反射实验一致。尽管这种吸附距离表明双层和基质之间的相互作用将被水分子缓冲,但我们发现基质确实与双层直接相互作用。基质改变了双层的几个性质-它抑制了横向脂质波动,降低了脂质扩散率,并显著改变了横向电荷密度。此外,它在两个叶层中对脂质性质的影响不同。与表面羟化密度较低的基质相比,这种基质在较小的距离内附着在双层上,并且更广泛地重塑 POPC,这表明基质的亲水性与膜性质之间存在直接对应关系。然而,表面羟基的部分去质子化,如在轻度酸性条件下的硅质基质所预期的那样,产生了相反的效果:它增加了基质-双层的距离,我们归因于在带负电荷的基质上形成了双电层,并至少部分恢复了叶层不对称和头部基团的取向。总的来说,这项研究强调了脂质-基质相互作用的内在复杂性,并表明了两种表面属性-偶极密度和电荷密度-可以相互拮抗地作用于重塑脂质双层性质的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验