Wilson Sandra Jo, Polanin Joshua R, Lipsey Mark W
Peabody Research Institute, Vanderbilt University, USA.
Development Services Group, Inc., USA.
Res Synth Methods. 2016 Jun;7(2):121-39. doi: 10.1002/jrsm.1199.
A modification of the first stage of the standard procedure for two-stage meta-analytic structural equation modeling for use with large complex datasets is presented. This modification addresses two common problems that arise in such meta-analyses: (a) primary studies that provide multiple measures of the same construct and (b) the correlation coefficients that exhibit substantial heterogeneity, some of which obscures the relationships between the constructs of interest or undermines the comparability of the correlations across the cells. One component of this approach is a three-level random effects model capable of synthesizing a pooled correlation matrix with dependent correlation coefficients. Another component is a meta-regression that can be used to generate covariate-adjusted correlation coefficients that reduce the influence of selected unevenly distributed moderator variables. A non-technical presentation of these techniques is given, along with an illustration of the procedures with a meta-analytic dataset. Copyright © 2016 John Wiley & Sons, Ltd.
本文提出了一种对两阶段元分析结构方程建模标准程序第一阶段的修改方法,用于处理大型复杂数据集。这种修改解决了此类元分析中出现的两个常见问题:(a)提供同一构念多种测量指标的原始研究,以及(b)表现出显著异质性的相关系数,其中一些掩盖了感兴趣构念之间的关系,或破坏了各单元格间相关性的可比性。该方法的一个组成部分是一个三级随机效应模型,能够合成具有相依相关系数的合并相关矩阵。另一个组成部分是元回归,可用于生成协变量调整后的相关系数,以减少选定的分布不均的调节变量的影响。本文给出了这些技术的非技术性介绍,并通过一个元分析数据集对程序进行了说明。版权所有© 2016约翰威立父子有限公司。