Kuzmenkov Alexey I, Sachkova Maria Y, Kovalchuk Sergey I, Grishin Eugene V, Vassilevski Alexander A
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
Biochem J. 2016 Aug 15;473(16):2495-506. doi: 10.1042/BCJ20160436. Epub 2016 Jun 10.
In the present study, we show that venom of the ant spider Lachesana tarabaevi is unique in terms of molecular composition and toxicity. Whereas venom of most spiders studied is rich in disulfide-containing neurotoxic peptides, L. tarabaevi relies on the production of linear (no disulfide bridges) cytolytic polypeptides. We performed full-scale peptidomic examination of L. tarabaevi venom supported by cDNA library analysis. As a result, we identified several dozen components, and a majority (∼80% of total venom protein) exhibited membrane-active properties. In total, 33 membrane-interacting polypeptides (length of 18-79 amino acid residues) comprise five major groups: repetitive polypeptide elements (Rpe), latarcins (Ltc), met-lysines (MLys), cyto-insectotoxins (CIT) and latartoxins (LtTx). Rpe are short (18 residues) amphiphilic molecules that are encoded by the same genes as antimicrobial peptides Ltc 4a and 4b. Isolation of Rpe confirms the validity of the iPQM (inverted processing quadruplet motif) proposed to mark the cleavage sites in spider toxin precursors that are processed into several mature chains. MLys (51 residues) present 'idealized' amphiphilicity when modelled in a helical wheel projection with sharply demarcated sectors of hydrophobic, cationic and anionic residues. Four families of CIT (61-79 residues) are the primary weapon of the spider, accounting for its venom toxicity. Toxins from the CIT 1 and 2 families have a modular structure consisting of two shorter Ltc-like peptides. We demonstrate that in CIT 1a, these two parts act in synergy when they are covalently linked. This finding supports the assumption that CIT have evolved through the joining of two shorter membrane-active peptides into one larger molecule.
在本研究中,我们表明蚁蛛Lachesana tarabaevi的毒液在分子组成和毒性方面独具特色。大多数已研究蜘蛛的毒液富含含二硫键的神经毒性肽,而L. tarabaevi则依赖于线性(无二硫键)溶细胞多肽的产生。我们在cDNA文库分析的支持下,对L. tarabaevi毒液进行了全面的肽组学研究。结果,我们鉴定出了几十种成分,其中大多数(约占毒液总蛋白的80%)具有膜活性特性。总共有33种与膜相互作用的多肽(长度为18 - 79个氨基酸残基)可分为五个主要类别:重复多肽元件(Rpe)、拉塔辛(Ltc)、甲硫氨酸 - 赖氨酸(MLys)、细胞昆虫毒素(CIT)和拉塔毒素(LtTx)。Rpe是短的(18个残基)两亲性分子,与抗菌肽Ltc 4a和4b由相同基因编码。Rpe的分离证实了为标记蜘蛛毒素前体中加工成多个成熟链的切割位点而提出的iPQM(反向加工四联体基序)的有效性。MLys(51个残基)在螺旋轮投影中建模时呈现出“理想化”的两亲性,具有明显划分的疏水、阳离子和阴离子残基区域。CIT的四个家族(61 - 79个残基)是这种蜘蛛的主要武器,决定了其毒液的毒性。CIT 1和2家族的毒素具有模块化结构,由两个较短的类似Ltc的肽组成。我们证明,在CIT 1a中,这两个部分共价连接时协同发挥作用。这一发现支持了CIT是通过将两个较短的膜活性肽连接成一个更大的分子而进化而来的假设。