Suppr超能文献

振动光谱成像在作物和植物分析、监测与表征中的应用及发展

Applications and Developments on the Use of Vibrational Spectroscopy Imaging for the Analysis, Monitoring and Characterisation of Crops and Plants.

作者信息

Cozzolino Daniel, Roberts Jessica

机构信息

School of Medical and Applied Sciences, Central Queensland Innovation and Research Precinct (CQIRP), Central Queensland University (CQU), Bruce Highway, North Rockhampton, Qld 4701, Queensland, Australia.

出版信息

Molecules. 2016 Jun 10;21(6):755. doi: 10.3390/molecules21060755.

Abstract

The adaptation and use of advanced technologies is an effective and encouraging way to efficiently and reliably characterise crops and plants. Additionally advances in these technologies will improve the information available for agronomists, breeders and plant physiologists in order to develop best management practices in the process and commercialization of agricultural products and commodities. Methods based on vibrational spectroscopy such as near infrared (NIR) spectroscopy using either single spot or hyperspectral measurements are now more available and ready to use than ever before. The main characteristics of these methodologies (high-throughput, non-destructive) have determined a growth in basic and applied research using NIR spectroscopy in many disciplines related with crop and plant sciences. A wide range of studies have demonstrated the ability of NIR spectroscopy to analyse different parameters in crops. Recently the use of hyperspectral imaging techniques have expanded the range of applications in crop and plant sciences. This article provides an overview of applications and developments of NIR hyperspectral image for the analysis, monitoring and characterisation of crops and plants.

摘要

采用和运用先进技术是高效且可靠地表征作物和植物的一种有效且令人鼓舞的方式。此外,这些技术的进步将改善可供农学家、育种人员和植物生理学家使用的信息,以便在农产品和商品的生产过程及商业化过程中制定最佳管理实践。基于振动光谱学的方法,如使用单点或高光谱测量的近红外(NIR)光谱学,如今比以往任何时候都更容易获得且随时可供使用。这些方法的主要特点(高通量、无损)促使在许多与作物和植物科学相关的学科中,利用近红外光谱学进行基础研究和应用研究的数量有所增长。大量研究已经证明近红外光谱学能够分析作物中的不同参数。最近,高光谱成像技术的应用扩大了在作物和植物科学中的应用范围。本文概述了近红外高光谱图像在作物和植物分析、监测及表征方面的应用与发展。

相似文献

2
Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.
Chem Soc Rev. 2014 Dec 21;43(24):8200-14. doi: 10.1039/c4cs00062e. Epub 2014 Aug 26.
4
Ultra-high-resolution hyperspectral imagery datasets for precision agriculture applications.
Data Brief. 2024 Jun 18;55:110649. doi: 10.1016/j.dib.2024.110649. eCollection 2024 Aug.
5
Thermography to explore plant-environment interactions.
J Exp Bot. 2013 Oct;64(13):3937-49. doi: 10.1093/jxb/ert029. Epub 2013 Apr 18.
7
Pest insect control in organically-produced crops of field vegetables.
Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001;66(2a):259-67.
8
A review of hyperspectral image analysis techniques for plant disease detection and identif ication.
Vavilovskii Zhurnal Genet Selektsii. 2022 Mar;26(2):202-213. doi: 10.18699/VJGB-22-25.
9
More 'crop per drop': constraints and opportunities for precision irrigation in European agriculture.
J Sci Food Agric. 2013 Mar 30;93(5):977-80. doi: 10.1002/jsfa.6051. Epub 2013 Feb 21.
10
Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals.
J Sci Food Agric. 2014 Jan 30;94(2):174-9. doi: 10.1002/jsfa.6367. Epub 2013 Sep 19.

本文引用的文献

1
5
High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.
J Integr Plant Biol. 2012 May;54(5):312-20. doi: 10.1111/j.1744-7909.2012.01116.x.
6
Advances in sensors applied to agriculture and forestry.
Sensors (Basel). 2011;11(9):8930-8932. doi: 10.3390/s110908930. Epub 2011 Sep 15.
10
Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis.
Anal Chim Acta. 2009 Oct 27;653(2):121-30. doi: 10.1016/j.aca.2009.09.005. Epub 2009 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验