Matsumoto Takeshi, Sakajo Takashi
Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
Phys Rev E. 2016 May;93(5):053101. doi: 10.1103/PhysRevE.93.053101. Epub 2016 May 2.
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.
作为一个生成类似于惯性范围内纳维-斯托克斯湍流级联的最小数学模型,我们提出了一个一维偏微分方程模型,该模型在无粘情况下守恒涡量平方类似物(涡旋度)的积分。通过大规模随机强迫和小粘性,我们在数值上发现该模型展现出涡旋度级联、对量纲分析预测有相当大修正的宽能谱、奇特的间歇性以及动力系统结构中的自相似性。