Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Soft Matter. 2016 Jul 21;12(27):5883-97. doi: 10.1039/c6sm00885b. Epub 2016 Jun 15.
We generalize our recent continuum theory for the stress-gradient-induced migration of polymers [Zhu et al., J. Rheol., 2016, 60, 327-343] by incorporating the effect of solid boundaries on concentration variations. For a model flow in a channel with periodic slip wall velocity, which can in principle be produced by an electric field in the presence of a sinusoidal wall charge, we obtain theoretical results for the steady-state distribution of dilute solutions of polymer dumbbells using a systematic perturbation analysis in Weissenberg number Wi. We find that the presence of a thin wall depletion zone changes the lowest order solution from second to first in Wi and drastically affects the concentration field far from the depletion layer, due both to a coupling of the second derivative of the velocity field to the concentration gradient, and to convection of the polymer-depleted fluid in this layer into the bulk of the fluid. Additional effects induced by wall hydrodynamic interaction (HI) are assessed by incorporating polymer flux from the wall-HI migration theory of Ma and Graham into our continuum theory. We establish the range of validity of our theory by comparing the theoretical results with Brownian dynamics (BD) simulations: excellent agreement is achieved for relatively small molecules, while the theory breaks down when the Gradient number Gd is greater than 0.5, where Gd is the ratio of polymer coil size to the length scale over which the velocity gradient changes. The BD simulations are also extended to the case of long Hookean chains with numbers of springs per chain ranging from 1 to 32, where it is found that for fixed Gd and Wi, the results are nearly identical, showing that all important phenomena are captured by a simple dumbbell model, thus supporting the continuum theory which was derived for the case of dumbbells. In addition, the Stochastic Rotation Dynamics (SRD) method is employed to evaluate the role of HI on the migration pattern, producing effects consistent with the continuum theory incorporating the wall-migration flux. In general, we demonstrate that the polymer concentrates in drastically different regions of the channel depending on Gd and Wi.
我们通过将固体边界对浓度变化的影响纳入进来,推广了我们最近关于应力梯度诱导聚合物迁移的连续体理论[Zhu 等人,J. Rheol.,2016,60,327-343]。对于具有周期性滑移壁速度的模型流动,原则上可以通过存在正弦壁电荷的电场来产生这种流动,我们使用 Weissenberg 数 Wi 的系统微扰分析,为聚合物哑铃稀溶液的稳态分布获得了理论结果。我们发现,由于速度场的二阶导数与浓度梯度的耦合,以及在这个层中聚合物耗尽流体的对流进入流体主体,薄壁耗尽区的存在将最低阶解从 Wi 的二阶变为一阶,并且极大地影响了远离耗尽层的浓度场。由壁面流体动力学相互作用 (HI) 引起的附加效应通过将 Ma 和 Graham 的聚合物通量从壁面-HI 迁移理论纳入我们的连续体理论来评估。我们通过将理论结果与布朗动力学 (BD) 模拟进行比较来确定我们理论的有效性范围:对于相对较小的分子,理论结果与实验结果吻合得非常好,而当梯度数 Gd 大于 0.5 时,理论就失效了,其中 Gd 是聚合物线圈尺寸与速度梯度变化的长度尺度之比。BD 模拟也扩展到具有 1 到 32 个弹簧的长 Hookean 链的情况,结果发现对于固定的 Gd 和 Wi,结果几乎相同,这表明所有重要的现象都被一个简单的哑铃模型所捕捉,从而支持了为哑铃模型推导的连续体理论。此外,采用随机旋转动力学 (SRD) 方法来评估 HI 对迁移模式的作用,产生与包含壁迁移通量的连续体理论一致的结果。一般来说,我们证明了聚合物根据 Gd 和 Wi 在通道的截然不同的区域集中。