Suppr超能文献

提升混合离子钙钛矿太阳能电池效率的策略:改变空穴传输材料的几何形状。

Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material.

机构信息

Physical Chemistry, Center of Molecular Devices, Department of Chemistry-Ångström Laboratory, Uppsala University , SE-75120 Uppsala, Sweden.

Organic Chemistry, Center of Molecular Devices, Department of Chemistry, Chemical Science and Engineering, KTH Royal Institute of Technology , SE-10044 Stockholm, Sweden.

出版信息

ACS Nano. 2016 Jul 26;10(7):6816-25. doi: 10.1021/acsnano.6b02442. Epub 2016 Jun 20.

Abstract

The hole transporting material (HTM) is an essential component in perovskite solar cells (PSCs) for efficient extraction and collection of the photoinduced charges. Triphenylamine- and carbazole-based derivatives have extensively been explored as alternative and economical HTMs for PSCs. However, the improvement of their power conversion efficiency (PCE), as well as further investigation of the relationship between the chemical structure of the HTMs and the photovoltaic performance, is imperatively needed. In this respect, a simple carbazole-based HTM X25 was designed on the basis of a reference HTM, triphenylamine-based X2, by simply linking two neighboring phenyl groups in a triphenylamine unit through a carbon-carbon single bond. It was found that a lowered highest occupied molecular orbital (HOMO) energy level was obtained for X25 compared to that of X2. Besides, the carbazole moiety in X25 improved the molecular planarity as well as conductivity property in comparison with the triphenylamine unit in X2. Utilizing the HTM X25 in a solar cell with mixed-ion perovskite [HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3, a highest reported PCE of 17.4% at 1 sun (18.9% under 0.46 sun) for carbazole-based HTM in PSCs was achieved, in comparison of a PCE of 14.7% for triphenylamine-based HTM X2. From the steady-state photoluminescence and transient photocurrent/photovoltage measurements, we conclude that (1) the lowered HOMO level for X25 compared to X2 favored a higher open-circuit voltage (Voc) in PSCs; (2) a more uniform formation of X25 capping layer than X2 on the surface of perovskite resulted in more efficient hole transport and charge extraction in the devices. In addition, the long-term stability of PSCs with X25 is significantly enhanced compared to X2 due to its good uniformity of HTM layer and thus complete coverage on the perovskite. The results provide important information to further develop simple and efficient small molecular HTMs applied in solar cells.

摘要

空穴传输材料(HTM)是钙钛矿太阳能电池(PSC)中用于有效提取和收集光生电荷的重要组成部分。三苯胺和咔唑基衍生物已被广泛探索作为 PSC 的替代和经济高效的 HTM。然而,需要提高它们的功率转换效率(PCE),并进一步研究 HTM 的化学结构与光伏性能之间的关系。在这方面,基于参考 HTM 三苯胺基 X2,通过在三苯胺单元中的两个相邻苯基之间简单地连接一个碳-碳单键,设计了一种简单的咔唑基 HTM X25。与 X2 相比,发现 X25 的最高占据分子轨道(HOMO)能级降低。此外,与 X2 中的三苯胺单元相比,X25 中的咔唑部分提高了分子的平面性和导电性。在使用混合离子钙钛矿[HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3 的太阳能电池中使用 HTM X25 时,与三苯胺基 HTM X2 的 14.7%相比,实现了 PSC 中咔唑基 HTM 报道的最高 PCE 为 17.4%(在 0.46 阳光下为 18.9%)。从稳态光致发光和瞬态电流/电压测量中,我们得出结论:(1)与 X2 相比,X25 的 HOMO 能级降低有利于 PSCs 中的开路电压(Voc)更高;(2)在钙钛矿表面上形成的 X25 盖帽层比 X2 更均匀,导致器件中更有效的空穴传输和电荷提取。此外,与 X2 相比,X25 的 PSC 长期稳定性显著提高,这是由于其 HTM 层具有良好的均匀性,从而完全覆盖了钙钛矿。这些结果为进一步开发应用于太阳能电池的简单高效小分子 HTM 提供了重要信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验