Bioorganic Chemistry Laboratory, New Chemistry Unit, and ‡Molecular Electronics Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bengaluru 560064, India.
J Am Chem Soc. 2016 Jul 6;138(26):8259-68. doi: 10.1021/jacs.6b03811. Epub 2016 Jun 23.
The possibility of designing programmable thin-film supramolecular structures with spontaneous polarization widens the utility of facile supramolecular chemistry. Although a range of low molecular mass molecular single crystals has been shown to exhibit ferroelectric polarization, demonstration of stimuli-responsive, thin-film, solution-processable supramolecular ferroelectric materials is rare. We introduce aromatic π-electron donor-acceptor molecular systems responsive to multiple stimuli that undergo supramolecular chiral mixed-stack charge-transfer (CT) coassembly through the tweezer-inclusion-sandwich process supported by hydrogen-bonding interactions. The structural synergy originating from hydrogen-bonding and chiral CT interactions resulted in the development of spontaneous unidirectional macroscopic polarization in the crystalline nanofibrous hydrogel network, under ambient conditions. Moreover, the tunability of these interactions with optical, mechanical, thermal, and electrical stimuli allowed the design of multistate thin-film memory devices. Our design strategy of the supramolecular motif is expected to help the development of new molecular engineering strategies for designing potentially useful smart multicomponent organic electronics.
具有自发极化的可编程薄膜超分子结构的可能性拓宽了简便超分子化学的应用范围。尽管已经证明了一系列低分子量的分子单晶具有铁电极化,但刺激响应、薄膜、溶液处理的超分子铁电材料的演示却很少见。我们引入了对多种刺激响应的芳香π-电子给体-受体分子体系,这些体系通过双锥-夹三明治过程发生超分子手性混合堆积电荷转移(CT)共组装,该过程得到氢键相互作用的支持。源于氢键和手性 CT 相互作用的结构协同作用导致在环境条件下,在结晶纳米纤维水凝胶网络中产生自发的单向宏观极化。此外,这些相互作用与光学、机械、热和电刺激的可调性允许设计多状态薄膜存储器件。我们的超分子基元设计策略有望有助于为设计潜在有用的智能多组分有机电子设备开发新的分子工程策略。