Suppr超能文献

在小鼠异体移植肿瘤生长抑制实验中信息协议的优化设计。

Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

机构信息

INSERM, IAME, UMR 1137, F-75018, Paris, France.

Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018, Paris, France.

出版信息

AAPS J. 2016 Sep;18(5):1233-1243. doi: 10.1208/s12248-016-9924-z. Epub 2016 Jun 15.

Abstract

Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

摘要

肿瘤生长抑制 (TGI) 模型在肿瘤学的临床前药物开发中越来越多地被用于体内抗肿瘤效果的评估。在异种移植小鼠中测量肿瘤大小,通常仅在治疗期间和治疗后不久进行,从而无法正确识别某些 TGI 模型参数。我们的目的是 (i) 评估在肿瘤再生长期间进行测量的重要性,以及 (ii) 研究纳入每个臂的小鼠比例。为此,应用了基于 Fisher 信息矩阵的最优设计理论,并在 PFIM4.0 中实现。使用发表的异种移植实验,涉及不同的药物、方案和细胞系,来帮助使用 Simeoni TGI 模型优化实验设置和参数。对于每个实验,采用两臂设计,即对照与治疗,分别优化有无在肿瘤再生长期间采样的限制,即“短”和“长”研究。在长研究中,测量可以进行到肿瘤重量达到 6g,而在短研究中,实验在治疗结束后 3 天停止。长研究中的预测相对标准误差小于相应的短研究。一些最佳测量时间位于再生长阶段,强调了在治疗结束后继续进行实验的重要性。在四臂设计中,结果表明对照和治疗小鼠的比例可以不同。总之,在肿瘤再生长期间进行测量应该成为肿瘤学中信息丰富的临床前研究的一般规则,尤其是在怀疑药物有延迟作用时。

相似文献

1
Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.
AAPS J. 2016 Sep;18(5):1233-1243. doi: 10.1208/s12248-016-9924-z. Epub 2016 Jun 15.
4
Weichang'an and 5-fluorouracil suppresses colorectal cancer in a mouse model.
World J Gastroenterol. 2015 Jan 28;21(4):1125-39. doi: 10.3748/wjg.v21.i4.1125.
7
Correlation of pharmacokinetics with the antitumor activity of Cetuximab in nude mice bearing the GEO human colon carcinoma xenograft.
Cancer Chemother Pharmacol. 2005 Nov;56(5):455-64. doi: 10.1007/s00280-005-1022-3. Epub 2005 Jun 10.
8
Biomarker- versus drug-driven tumor growth inhibition models: an equivalence analysis.
J Pharmacokinet Pharmacodyn. 2015 Dec;42(6):611-26. doi: 10.1007/s10928-015-9427-z. Epub 2015 Jul 26.
9
Synergistic inhibition of melanoma xenografts by Brequinar sodium and Doxorubicin.
Biomed Pharmacother. 2019 Feb;110:29-36. doi: 10.1016/j.biopha.2018.11.010. Epub 2018 Nov 17.
10
Anticancer efficacy and toxicokinetics of a novel paclitaxel-clofazimine nanoparticulate co-formulation.
Drug Deliv Transl Res. 2015 Jun;5(3):257-67. doi: 10.1007/s13346-015-0222-6.

引用本文的文献

5
Exposure-response modeling improves selection of radiation and radiosensitizer combinations.
J Pharmacokinet Pharmacodyn. 2022 Apr;49(2):167-178. doi: 10.1007/s10928-021-09784-7. Epub 2021 Oct 8.
7
Generating Robust and Informative Nonclinical and Bacterial Infection Model Efficacy Data To Support Translation to Humans.
Antimicrob Agents Chemother. 2019 Apr 25;63(5). doi: 10.1128/AAC.02307-18. Print 2019 May.

本文引用的文献

1
Combined RNAi targeting human Stat3 and ADAM9 as gene therapy for non-small cell lung cancer.
Oncol Lett. 2016 Feb;11(2):1242-1250. doi: 10.3892/ol.2015.4018. Epub 2015 Dec 9.
4
Growth rate analysis and efficient experimental design for tumor xenograft studies.
Cancer Inform. 2014 Dec 9;13(Suppl 4):65-72. doi: 10.4137/CIN.S13974. eCollection 2014.
6
Modeling of human tumor xenografts and dose rationale in oncology.
Drug Discov Today Technol. 2013 Sep;10(3):e365-72. doi: 10.1016/j.ddtec.2012.07.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验