Tschabrunn Cory M, Roujol Sebastien, Dorman Nicole C, Nezafat Reza, Josephson Mark E, Anter Elad
From the Harvard-Thorndike Electrophysiology Institute (C.M.T., M.E.J., E.A.) and Cardiovascular Division, Department of Medicine (C.M.T., S.R., R.N., M.E.J., E.A.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and Biosense Webster, Johnson & Johnson, Diamond Bar, CA (N.C.D.).
Circ Arrhythm Electrophysiol. 2016 Jun;9(6). doi: 10.1161/CIRCEP.115.003841.
Mapping resolution is influenced by electrode size and interelectrode spacing. The aims of this study were to establish normal electrogram criteria for 1-mm multielectrode-mapping catheters (Pentaray) in the ventricle and to compare its mapping resolution within scar to standard 3.5-mm catheters (Smart-Touch Thermocool).
Three healthy swine and 11 swine with healed myocardial infarction underwent sequential mapping of the left ventricle with both catheters. Bipolar voltage amplitude in healthy tissue was similar between 3.5- and 1-mm multielectrode catheters with a 5th percentile of 1.61 and 1.48 mV, respectively. In swine with healed infarction, the total area of low bipolar voltage amplitude (defined as <1.5 mV) was 22.5% smaller using 1-mm multielectrode catheters (21.7 versus 28.0 cm2; P=0.003). This was more evident in the area of dense scar (bipolar amplitude <0.5 mV) with a 47% smaller very low-voltage area identified using 1-mm electrode catheters (7.1 versus 15.2 cm(2); P=0.003). In this region, 1-mm multielectrode catheters recorded higher voltage amplitude (0.72±0.81 mV versus 0.30±0.12 mV; P<0.001). Importantly, 27% of these dense scar electrograms showed distinct triphasic electrograms when mapped using a 1-mm multielectrode catheter compared with fractionated multicomponent electrogram recorded with the 3.5-mm electrode catheter. In 8 mapped reentrant ventricular tachycardias, the circuits included regions of preserved myocardial tissue channels identified with 1-mm multielectrode catheters but not 3.5-mm electrode catheters. Pacing threshold within the area of low voltage was lower with 1-mm electrode catheters (0.9±1.3 mV versus 3.8±3.7 mV; P=0.001).
Mapping with small closely spaced electrode catheters can improve mapping resolution within areas of low voltage.
标测分辨率受电极大小和电极间距的影响。本研究的目的是建立心室中1毫米多电极标测导管(Pentaray)的正常电图标准,并比较其在瘢痕内与标准3.5毫米导管(Smart-Touch Thermocool)的标测分辨率。
3只健康猪和11只心肌梗死愈合的猪接受了两种导管对左心室的序贯标测。在健康组织中,3.5毫米和1毫米多电极导管的双极电压幅度相似,第5百分位数分别为1.61和1.48毫伏。在心肌梗死愈合的猪中,使用1毫米多电极导管时,双极电压幅度低(定义为<1.5毫伏)的总面积小22.5%(21.7对28.0平方厘米;P=0.003)。这在致密瘢痕区域(双极幅度<0.5毫伏)更为明显,使用1毫米电极导管识别出的极低电压区域小47%(7.1对15.2平方厘米;P=0.003)。在该区域,1毫米多电极导管记录到更高的电压幅度(0.72±0.81毫伏对0.30±0.12毫伏;P<0.001)。重要的是,与使用3.5毫米电极导管记录的碎裂多成分电图相比,使用1毫米多电极导管标测时,这些致密瘢痕电图中有27%显示出明显的三相电图。在8例标测到的折返性室性心动过速中,其环路包括用1毫米多电极导管而非3.5毫米电极导管识别出的保留心肌组织通道区域。1毫米电极导管在低电压区域的起搏阈值更低(0.9±1.3毫伏对3.8±3.7毫伏;P=0.001)。
使用小间距紧密排列电极的导管进行标测可提高低电压区域的标测分辨率。