Auger M, Smith I C, Jarrell H C
Division of Biological Sciences, National Research Council of Canada, Ottawa.
Biochim Biophys Acta. 1989 Jun 6;981(2):351-7. doi: 10.1016/0005-2736(89)90047-3.
We have examined the effects of the local anesthetic tetracaine on the orientational and dynamic properties of glycolipid model membranes. We elected to study the interactions of tetracaine with the pure glycolipid 1,2-di-O-tetradecyl-3-O-(beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL) and a mixture of beta-DTGL (20 mol%) in dimyristoylphosphatidylcholine (DMPC) by deuterium NMR (2H-NMR) spectroscopy. 2H-NMR spectra of beta-DTGL have been measured as a function of temperature in the presence of both the charged (pH 5.5) and uncharged forms (pH 9.5) of tetracaine. The results indicate that the anesthetic induces the formation of non-lamellar phases. Specifically, the incorporation of uncharged tetracaine results in the formation of a hexagonal phase which is stable from 52 to 60 degrees C. At lower pH, the spectrum at 52 degrees C is very reminescent of that of the beta-glucolipid alone in a bilayer environment, while as the temperature is elevated to 60 degrees C, a transition from a spectrum indicative of axial symmetry to one due to nearly isotropic motion or symmetry occurs, which may result from the formation of a cubic phase. Although it leads to an alteration in the phase behavior, the presence of tetracaine does not induce large changes in the headgroup orientation of beta-DTGL. In contrast to the pure glycolipid situation, the interaction of tetracaine with beta-DTGL (20 mol%) in DMPC does not trigger the formation of non-lamellar phases, but leads to a slight reduction in molecular ordering. The presence of the charged form of the local anesthetic near the aqueous interface of the bilayer appears to induce a small change in the conformation about the C2-C3 bond of the glycerol backbone of beta-DTGL in the mixed lipid system. Thus, the major influence of the local anesthetic on glycolipids is a change in the stability of the lamellar phase, facilitating conversion to phases with hexagonal or isotropic environments for the lipid molecules.
我们研究了局部麻醉药丁卡因对糖脂模型膜的取向和动力学性质的影响。我们选择通过氘核磁共振(2H-NMR)光谱研究丁卡因与纯糖脂1,2-二-O-十四烷基-3-O-(β-D-吡喃葡萄糖基)-sn-甘油(β-DTGL)以及β-DTGL(20摩尔%)与二肉豆蔻酰磷脂酰胆碱(DMPC)混合物的相互作用。在带电荷(pH 5.5)和不带电荷(pH 9.5)形式的丁卡因存在下,已测量了β-DTGL的2H-NMR光谱随温度的变化。结果表明,该麻醉药诱导了非层状相的形成。具体而言,掺入不带电荷的丁卡因会导致形成六方相,该相在52至60摄氏度范围内稳定。在较低pH值下,52摄氏度时的光谱与双层环境中单独的β-糖脂的光谱非常相似,而当温度升高到60摄氏度时,会发生从指示轴对称的光谱到由于几乎各向同性运动或对称性导致的光谱的转变,这可能是由于立方相的形成。尽管丁卡因的存在导致了相行为的改变,但它不会引起β-DTGL头基取向的大变化。与纯糖脂情况相反,丁卡因与DMPC中β-DTGL(20摩尔%)的相互作用不会引发非层状相的形成,但会导致分子有序性略有降低。双层水界面附近局部麻醉药带电荷形式的存在似乎会在混合脂质体系中引起β-DTGL甘油主链C2-C3键构象的小变化。因此,局部麻醉药对糖脂的主要影响是层状相稳定性的变化,促进向脂质分子具有六方或各向同性环境的相的转变。