Suppr超能文献

基于序列特征的Piwi相互作用RNA的检测

Detection of Piwi-interacting RNAs based on sequence features.

作者信息

Liu Y J, Zhang J Y, Li A M, Liu Z W, Zhang Y Y, Sun X H

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, China.

School of Computer Science and Technology, Xi'an University of Technology, Xi'an, China.

出版信息

Genet Mol Res. 2016 May 13;15(2):gmr8638. doi: 10.4238/gmr.15028638.

Abstract

Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs. Distinguishing piRNAs from other non-coding RNAs is important because of their important role in the physiological regulation of spermatogenesis, genome protection from transposons, and regulation of mRNAs and long non-coding RNAs. Few computational studies have addressed piRNAs detection, and both effectiveness and efficiency of piRNA detection tools require improvement. In this study, a piRNA detection method based on sequence features and a support vector machine was developed. Four types of features are proposed: weighted k-mer, weighted k-mer with wildcards, position-specific base, and piRNA length. The piRNA sequences from human, mouse, rat, and drosophila were respectively used in this experiment. Compared to existing algorithms, the proposed method provides a better balance between precision and sensitivity (both are approximately 90%), and although these values were slightly slower than those obtained using the piRNA annotation approach, the proposed method was four-fold faster than piRPred and 229-fold faster than piRNA predictor.

摘要

Piwi相互作用RNA(piRNA)是一类小的非编码RNA。区分piRNA与其他非编码RNA很重要,因为它们在精子发生的生理调节、基因组免受转座子影响以及mRNA和长链非编码RNA的调节中发挥着重要作用。很少有计算研究涉及piRNA检测,并且piRNA检测工具的有效性和效率都需要改进。在本研究中,开发了一种基于序列特征和支持向量机的piRNA检测方法。提出了四种类型的特征:加权k-mer、带通配符的加权k-mer、位置特异性碱基和piRNA长度。本实验分别使用了来自人类、小鼠、大鼠和果蝇的piRNA序列。与现有算法相比,所提出的方法在精度和灵敏度之间提供了更好的平衡(两者均约为90%),尽管这些值比使用piRNA注释方法获得的值略慢,但所提出的方法比piRPred快四倍,比piRNA predictor快229倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验