Domingo-Perez Francisco, Lazaro-Galilea Jose Luis, Bravo Ignacio, Gardel Alfredo, Rodriguez David
Department of Electronics, University of Alcalá, Alcalá de Henares E-28806, Spain.
Sensors (Basel). 2016 Jun 22;16(6):934. doi: 10.3390/s16060934.
This paper focuses on optimal sensor deployment for indoor localization with a multi-objective evolutionary algorithm. Our goal is to obtain an algorithm to deploy sensors taking the number of sensors, accuracy and coverage into account. Contrary to most works in the literature, we consider the presence of obstacles in the region of interest (ROI) that can cause occlusions between the target and some sensors. In addition, we aim to obtain all of the Pareto optimal solutions regarding the number of sensors, coverage and accuracy. To deal with a variable number of sensors, we add speciation and structural mutations to the well-known non-dominated sorting genetic algorithm (NSGA-II). Speciation allows one to keep the evolution of sensor sets under control and to apply genetic operators to them so that they compete with other sets of the same size. We show some case studies of the sensor placement of an infrared range-difference indoor positioning system with a fairly complex model of the error of the measurements. The results obtained by our algorithm are compared to sensor placement patterns obtained with random deployment to highlight the relevance of using such a deployment algorithm.
本文聚焦于使用多目标进化算法进行室内定位的最优传感器部署。我们的目标是获得一种在考虑传感器数量、精度和覆盖范围的情况下部署传感器的算法。与文献中的大多数工作不同,我们考虑了感兴趣区域(ROI)中存在的障碍物,这些障碍物可能会导致目标与某些传感器之间出现遮挡。此外,我们旨在获得关于传感器数量、覆盖范围和精度的所有帕累托最优解。为了处理可变数量的传感器,我们在著名的非支配排序遗传算法(NSGA-II)中添加了物种形成和结构变异。物种形成使人们能够控制传感器集的进化,并对它们应用遗传算子,以便它们与相同大小的其他集竞争。我们展示了一些具有相当复杂测量误差模型的红外距离差室内定位系统的传感器放置案例研究。将我们的算法得到的结果与随机部署获得的传感器放置模式进行比较,以突出使用这种部署算法的相关性。