Suppr超能文献

基于簇的无线传感器网络中用于目标跟踪的分布式信息压缩

Distributed Information Compression for Target Tracking in Cluster-Based Wireless Sensor Networks.

作者信息

Liao Shi-Kuan, Lai Kai-Jay, Tsai Hsiao-Ping, Wen Chih-Yu

机构信息

Department of Electrical Engineering, Graduate Institute of Communication Engineering, National Chung Hsing University, Taichung 402, Taiwan.

出版信息

Sensors (Basel). 2016 Jun 22;16(6):937. doi: 10.3390/s16060937.

Abstract

Target tracking is a critical wireless sensor application, which involves signal and information processing technologies. In conventional target position estimation methods, an estimate is usually demonstrated by an average target position. In contrast, this work proposes a distributed information compression method to describe the measurement uncertainty of tracking problems in cluster-based wireless sensor networks. The leader-based information processing scheme is applied to perform target positioning and energy conservation. A two-level hierarchical network topology is adopted for energy-efficient target tracking with information compression. A Level 1 network architecture is a cluster-based network topology for managing network operations. A Level 2 network architecture is an event-based and leader-based topology, utilizing the concept of information compression to process the estimates of sensor nodes. The simulation results show that compared to conventional schemes, the proposed data processing scheme has a balanced system performance in terms of tracking accuracy, data size for transmission and energy consumption.

摘要

目标跟踪是一种关键的无线传感器应用,它涉及信号和信息处理技术。在传统的目标位置估计方法中,估计值通常由目标平均位置来表示。相比之下,这项工作提出了一种分布式信息压缩方法,用于描述基于簇的无线传感器网络中跟踪问题的测量不确定性。基于领导者的信息处理方案被应用于执行目标定位和节能。采用两级分层网络拓扑结构进行具有信息压缩的节能目标跟踪。一级网络架构是用于管理网络操作的基于簇的网络拓扑。二级网络架构是基于事件和领导者的拓扑,利用信息压缩概念来处理传感器节点的估计值。仿真结果表明,与传统方案相比,所提出的数据处理方案在跟踪精度、传输数据大小和能耗方面具有平衡的系统性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验