Suppr超能文献

在基因毒性应激下,缺氧诱导因子-1α(HIF-1α)和雷帕霉素在多发性骨髓瘤细胞中发挥衰老抑制作用。

HIF-1α and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress.

作者信息

Coudre Clémence, Alani Julien, Ritchie William, Marsaud Véronique, Sola Brigitte, Cahu Julie

机构信息

a Normandie Univ, UNICAEN, EA4652, MICAH team , Caen , France.

b Centenary Institute, University of Sydney , Sydney , Australia.

出版信息

Cell Cycle. 2016 Aug 17;15(16):2174-2182. doi: 10.1080/15384101.2016.1196302. Epub 2016 Jun 24.

Abstract

Multiple myeloma (MM) is still an incurable hematological malignancy. Despite recent progress due to new anti-myeloma agents, the pathology is characterized by a high frequency of de novo or acquired resistance. Delineating the mechanisms of MM resistance is essential for therapeutic advances. We previously showed that long-term genotoxic stress induces the establishment of a senescence-associated secretory phenotype, a pro-inflammatory response that favors the emergence of cells with cancer stem-like properties. Here, we studied the short-term response of MM cells following treatment with various DNA damaging agents such as the energetic C-ion irradiation. MM cells are highly resistant to all treatments and do not enter apoptosis after they arrest cycling at the G2 phase. Although the DNA damage response pathway was activated, DNA breaks remained chronically in damaged MM cells. We found, using a transcriptomic approach that RAD50, a major DNA repair gene was downregulated early after genotoxic stress. In two gerosuppression situations: induction of hypoxia and inhibition of the mammalian target of rapamycin (mTOR) pathway, we observed, after the treatment with a DNA damaging agent, a normalization of RAD50 expression concomitant with the absence of cell cycle arrest. We propose that combining inhibitors of mTOR with genotoxic agents could avoid MM cells to senesce and secrete pro-inflammatory factors responsible for cancer stem-like cell emergence and, in turn, relapse of MM patients.

摘要

多发性骨髓瘤(MM)仍然是一种无法治愈的血液系统恶性肿瘤。尽管由于新型抗骨髓瘤药物的出现最近取得了进展,但该疾病的病理特征是新发或获得性耐药的高频率出现。阐明MM耐药机制对于治疗进展至关重要。我们之前表明,长期的基因毒性应激会诱导衰老相关分泌表型的建立,这是一种促炎反应,有利于具有癌症干细胞样特性的细胞出现。在此,我们研究了MM细胞在用各种DNA损伤剂(如高能碳离子辐射)处理后的短期反应。MM细胞对所有处理都具有高度抗性,并且在细胞周期停滞于G2期后不会进入凋亡。尽管DNA损伤反应途径被激活,但DNA断裂在受损的MM细胞中持续存在。我们使用转录组学方法发现,主要的DNA修复基因RAD50在基因毒性应激后早期表达下调。在两种衰老抑制情况下:诱导缺氧和抑制雷帕霉素哺乳动物靶标(mTOR)途径,我们观察到在用DNA损伤剂处理后,RAD50表达恢复正常,同时没有细胞周期停滞。我们提出,将mTOR抑制剂与基因毒性药物联合使用可以避免MM细胞衰老并分泌导致癌症干细胞样细胞出现进而导致MM患者复发的促炎因子。

相似文献

1
HIF-1α and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress.
Cell Cycle. 2016 Aug 17;15(16):2174-2182. doi: 10.1080/15384101.2016.1196302. Epub 2016 Jun 24.
2
Rapamycin and the inhibition of the secretory phenotype.
Exp Gerontol. 2017 Aug;94:89-92. doi: 10.1016/j.exger.2017.01.026. Epub 2017 Feb 4.
6
Metformin enhances radiation response of ECa109 cells through activation of ATM and AMPK.
Biomed Pharmacother. 2015 Feb;69:260-6. doi: 10.1016/j.biopha.2014.11.021. Epub 2014 Nov 25.
9
Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells.
Cell Death Dis. 2012 Dec 20;3(12):e446. doi: 10.1038/cddis.2012.183.
10
Individual response to mTOR inhibition in delaying replicative senescence of mesenchymal stromal cells.
PLoS One. 2019 Jan 31;14(1):e0204784. doi: 10.1371/journal.pone.0204784. eCollection 2019.

引用本文的文献

1
Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces.
Cancer Drug Resist. 2022 Aug 2;5(4):850-872. doi: 10.20517/cdr.2022.20. eCollection 2022.
2
Resistance to drugs and cell death in cancer stem cells (CSCs).
J Transl Sci. 2020 Jun;6(3). doi: 10.15761/jts.1000341. Epub 2019 Jun 24.
3
The Great Escape: The Power of Cancer Stem Cells to Evade Programmed Cell Death.
Cancers (Basel). 2021 Jan 17;13(2):328. doi: 10.3390/cancers13020328.
4
Cyclin D1 targets hexokinase 2 to control aerobic glycolysis in myeloma cells.
Oncogenesis. 2020 Jul 24;9(7):68. doi: 10.1038/s41389-020-00253-3.
5
A predicted risk score based on the expression of 16 autophagy-related genes for multiple myeloma survival.
Oncol Lett. 2019 Nov;18(5):5310-5324. doi: 10.3892/ol.2019.10881. Epub 2019 Sep 19.
6
Rapamycin, proliferation and geroconversion to senescence.
Cell Cycle. 2018;17(24):2655-2665. doi: 10.1080/15384101.2018.1554781. Epub 2018 Dec 12.
7
Senescence: Adaptation to DNA repair targeting drugs?
Cell Cycle. 2016 Oct;15(19):2549-2550. doi: 10.1080/15384101.2016.1214047. Epub 2016 Aug 2.

本文引用的文献

1
Nucleolar repression facilitates initiation and maintenance of senescence.
Cell Cycle. 2015;14(22):3613-23. doi: 10.1080/15384101.2015.1100777.
2
Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?
Oncotarget. 2015 Dec 1;6(38):40496-506. doi: 10.18632/oncotarget.5800.
3
Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program).
Oncotarget. 2015 Sep 15;6(27):23238-48. doi: 10.18632/oncotarget.4836.
4
Novel therapeutic strategies for multiple myeloma.
Exp Hematol. 2015 Aug;43(8):732-41. doi: 10.1016/j.exphem.2015.04.010. Epub 2015 Jun 26.
5
Forging a signature of in vivo senescence.
Nat Rev Cancer. 2015 Jul;15(7):397-408. doi: 10.1038/nrc3960.
6
Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability.
PLoS One. 2015 Mar 19;10(3):e0121581. doi: 10.1371/journal.pone.0121581. eCollection 2015.
7
Global reorganization of the nuclear landscape in senescent cells.
Cell Rep. 2015 Feb 3;10(4):471-83. doi: 10.1016/j.celrep.2014.12.055. Epub 2015 Jan 29.
8
Multiple myeloma.
Lancet. 2015 May 30;385(9983):2197-208. doi: 10.1016/S0140-6736(14)60493-1. Epub 2014 Dec 23.
9
Senescence and apoptosis: dueling or complementary cell fates?
EMBO Rep. 2014 Nov;15(11):1139-53. doi: 10.15252/embr.201439245. Epub 2014 Oct 13.
10
Therapeutic advancements in multiple myeloma.
Front Oncol. 2014 Sep 4;4:241. doi: 10.3389/fonc.2014.00241. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验