Suppr超能文献

傅里叶变换衰减全反射- 光声光谱和拉曼光谱在农田土壤有机质测定中的应用。

Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils.

机构信息

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China.

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

出版信息

Talanta. 2016 Sep 1;158:262-269. doi: 10.1016/j.talanta.2016.05.076. Epub 2016 May 30.

Abstract

In soil analysis, Raman spectroscopy is not as widely used as infrared spectroscopy mainly owing to fluorescence interferences. This paper investigated the feasibility of Fourier-transform infrared photoacoustic (FTIR-PAS) and Raman spectroscopies for predicting soil organic matter (SOM) using partial least squares regression (PLSR) analysis. 194 farmland soil samples were collected and scanned with FTIR and Raman spectrometers in the spectral range of 4000-400cm(-1) and 180-3200cm(-1), respectively. For the PLSR models, the combined dataset was split into 146 samples as the calibration set (75%) and 48 samples as the validation set (25%). The optimal number of analytical factors was determined using a leave-one-out cross-validation. The results showed that SOM could be predicted using FTIR-PAS and Raman spectroscopies independently, with R(2)>0.70 and RPD>1.8 for the validation sets. In comparison to the single applications of FTIR-PAS and Raman spectroscopies, accurate prediction of SOM was made by combining FTIR-PAS and Raman spectroscopies, with R(2)=0.81 and RPD=2.18 for the validation sets. By statistically assessing large amounts of PLS models, model-population analysis confirmed that the accuracy of the PLS model can be increased by combining FTIR-PAS and Raman spectroscopies. In conclusion, the combination of FTIR-PAS and Raman spectroscopies is a promising alternative for soil characterization, especially for the prediction of SOM, owing to the availability of complementary information from both FTIR-PAS (polar vibrations) and Raman spectroscopy (non-polar vibrations).

摘要

在土壤分析中,拉曼光谱的应用不如红外光谱广泛,主要是由于荧光干扰。本文研究了傅里叶变换红外光声(FTIR-PAS)和拉曼光谱法通过偏最小二乘回归(PLSR)分析预测土壤有机质(SOM)的可行性。采集了 194 个农田土壤样本,并分别使用 FTIR 和拉曼光谱仪在 4000-400cm(-1)和 180-3200cm(-1)的光谱范围内对其进行扫描。对于 PLSR 模型,将组合数据集分为 146 个样本作为校准集(75%)和 48 个样本作为验证集(25%)。通过留一法交叉验证确定最佳分析因子数。结果表明,SOM 可以通过 FTIR-PAS 和拉曼光谱法独立预测,验证集的 R(2)>0.70 和 RPD>1.8。与 FTIR-PAS 和拉曼光谱法的单一应用相比,通过 FTIR-PAS 和拉曼光谱法的组合可以更准确地预测 SOM,验证集的 R(2)=0.81 和 RPD=2.18。通过对大量 PLS 模型进行统计评估,模型群体分析证实,通过结合 FTIR-PAS 和拉曼光谱法可以提高 PLS 模型的准确性。总之,FTIR-PAS 和拉曼光谱法的结合是一种很有前途的土壤特性描述方法,特别是对于 SOM 的预测,因为 FTIR-PAS(极性振动)和拉曼光谱(非极性振动)都提供了互补的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验