Chu Wen-Sheng, Zeng Jiabei, De la Torre Fernando, Cohn Jeffrey F, Messinger Daniel S
Robotics Institute, Carnegie Mellon University.
Beihang University, Beijing, China.
Proc IEEE Int Conf Comput Vis. 2015 Dec;2015:3146-3154. doi: 10.1109/ICCV.2015.360.
People are inherently social. Social interaction plays an important and natural role in human behavior. Most computational methods focus on individuals alone rather than in social context. They also require labelled training data. We present an unsupervised approach to discover interpersonal synchrony, referred as to two or more persons preforming common actions in overlapping video frames or segments. For computational efficiency, we develop a branch-and-bound (B&B) approach that affords exhaustive search while guaranteeing a globally optimal solution. The proposed method is entirely general. It takes from two or more videos any multi-dimensional signal that can be represented as a histogram. We derive three novel bounding functions and provide efficient extensions, including multi-synchrony detection and accelerated search, using a warm-start strategy and parallelism. We evaluate the effectiveness of our approach in multiple databases, including human actions using the CMU Mocap dataset [1], spontaneous facial behaviors using group-formation task dataset [37] and parent-infant interaction dataset [28].
人本质上是社会性的。社交互动在人类行为中扮演着重要且自然的角色。大多数计算方法仅关注个体而非社会背景。它们还需要有标签的训练数据。我们提出一种无监督方法来发现人际同步,即两个或更多人在重叠的视频帧或片段中执行共同动作。为提高计算效率,我们开发了一种分支定界(B&B)方法,该方法在保证全局最优解的同时进行穷举搜索。所提出的方法具有完全的通用性。它从两个或更多视频中获取任何可表示为直方图的多维信号。我们推导了三个新颖的边界函数,并提供了有效的扩展,包括多同步检测和加速搜索,使用热启动策略和并行性。我们在多个数据库中评估了我们方法的有效性,包括使用CMU动作捕捉数据集[1]的人类动作、使用群体形成任务数据集[37]和亲子互动数据集[28]的自发面部行为。