Suppr超能文献

人类互动中的无监督同步发现

Unsupervised Synchrony Discovery in Human Interaction.

作者信息

Chu Wen-Sheng, Zeng Jiabei, De la Torre Fernando, Cohn Jeffrey F, Messinger Daniel S

机构信息

Robotics Institute, Carnegie Mellon University.

Beihang University, Beijing, China.

出版信息

Proc IEEE Int Conf Comput Vis. 2015 Dec;2015:3146-3154. doi: 10.1109/ICCV.2015.360.

Abstract

People are inherently social. Social interaction plays an important and natural role in human behavior. Most computational methods focus on individuals alone rather than in social context. They also require labelled training data. We present an unsupervised approach to discover interpersonal synchrony, referred as to two or more persons preforming common actions in overlapping video frames or segments. For computational efficiency, we develop a branch-and-bound (B&B) approach that affords exhaustive search while guaranteeing a globally optimal solution. The proposed method is entirely general. It takes from two or more videos any multi-dimensional signal that can be represented as a histogram. We derive three novel bounding functions and provide efficient extensions, including multi-synchrony detection and accelerated search, using a warm-start strategy and parallelism. We evaluate the effectiveness of our approach in multiple databases, including human actions using the CMU Mocap dataset [1], spontaneous facial behaviors using group-formation task dataset [37] and parent-infant interaction dataset [28].

摘要

人本质上是社会性的。社交互动在人类行为中扮演着重要且自然的角色。大多数计算方法仅关注个体而非社会背景。它们还需要有标签的训练数据。我们提出一种无监督方法来发现人际同步,即两个或更多人在重叠的视频帧或片段中执行共同动作。为提高计算效率,我们开发了一种分支定界(B&B)方法,该方法在保证全局最优解的同时进行穷举搜索。所提出的方法具有完全的通用性。它从两个或更多视频中获取任何可表示为直方图的多维信号。我们推导了三个新颖的边界函数,并提供了有效的扩展,包括多同步检测和加速搜索,使用热启动策略和并行性。我们在多个数据库中评估了我们方法的有效性,包括使用CMU动作捕捉数据集[1]的人类动作、使用群体形成任务数据集[37]和亲子互动数据集[28]的自发面部行为。

相似文献

1
Unsupervised Synchrony Discovery in Human Interaction.
Proc IEEE Int Conf Comput Vis. 2015 Dec;2015:3146-3154. doi: 10.1109/ICCV.2015.360.
2
A Branch-and-Bound Framework for Unsupervised Common Event Discovery.
Int J Comput Vis. 2017 Jul;123(3):372-391. doi: 10.1007/s11263-017-0989-7. Epub 2017 Feb 9.
3
IntraFace.
IEEE Int Conf Autom Face Gesture Recognit Workshops. 2015 May;1. doi: 10.1109/FG.2015.7163082.
5
Affective Action and Interaction Recognition by Multi-View Representation Learning from Handcrafted Low-Level Skeleton Features.
Int J Neural Syst. 2022 Oct;32(10):2250040. doi: 10.1142/S012906572250040X. Epub 2022 Jul 25.
6
Spontaneous dyadic behavior predicts the emergence of interpersonal neural synchrony.
Neuroimage. 2023 Aug 15;277:120233. doi: 10.1016/j.neuroimage.2023.120233. Epub 2023 Jun 20.
8
How and Why People Synchronize: An Integrated Perspective.
Pers Soc Psychol Rev. 2025 May;29(2):159-187. doi: 10.1177/10888683241252036. Epub 2024 May 21.
9
Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions.
IEEE Trans Pattern Anal Mach Intell. 2013 Jul;35(7):1635-48. doi: 10.1109/TPAMI.2012.253.
10
Measuring Dynamics of Infant-Adult Synchrony Through Mocap.
Front Psychol. 2019 Dec 18;10:2839. doi: 10.3389/fpsyg.2019.02839. eCollection 2019.

引用本文的文献

1
Assessing Sensorimotor Synchronisation in Toddlers Using the Lookit Online Experiment Platform and Automated Movement Extraction.
Front Psychol. 2022 Jun 30;13:897230. doi: 10.3389/fpsyg.2022.897230. eCollection 2022.
2
Application of deep learning in teeth identification tasks on panoramic radiographs.
Dentomaxillofac Radiol. 2022 Jul 1;51(5):20210504. doi: 10.1259/dmfr.20210504. Epub 2022 Mar 2.
3
Discovering Synchronized Subsets of Sequences: A Large Scale Solution.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020 Jun;2020:9490-9499. doi: 10.1109/cvpr42600.2020.00951. Epub 2020 Aug 5.
4
A Branch-and-Bound Framework for Unsupervised Common Event Discovery.
Int J Comput Vis. 2017 Jul;123(3):372-391. doi: 10.1007/s11263-017-0989-7. Epub 2017 Feb 9.

本文引用的文献

1
Exact Discovery of Time Series Motifs.
Proc SIAM Int Conf Data Min. 2009;2009:473-484. doi: 10.1137/1.9781611972795.41.
2
IntraFace.
IEEE Int Conf Autom Face Gesture Recognit Workshops. 2015 May;1. doi: 10.1109/FG.2015.7163082.
3
Compound facial expressions of emotion.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1454-62. doi: 10.1073/pnas.1322355111. Epub 2014 Mar 31.
4
Alcohol and group formation: a multimodal investigation of the effects of alcohol on emotion and social bonding.
Psychol Sci. 2012 Aug 1;23(8):869-78. doi: 10.1177/0956797611435134. Epub 2012 Jul 3.
5
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):582-96. doi: 10.1109/TPAMI.2012.137. Epub 2012 Jun 26.
6
Applying machine learning to infant interaction: the development is in the details.
Neural Netw. 2010 Oct-Nov;23(8-9):1004-16. doi: 10.1016/j.neunet.2010.08.008. Epub 2010 Sep 21.
7
An interaction-embedded HMM framework for human behavior understanding: with nursing environments as examples.
IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1236-46. doi: 10.1109/TITB.2010.2052061. Epub 2010 Jun 7.
8
Automated Measurement of Facial Expression in Infant-Mother Interaction: A Pilot Study.
Infancy. 2009 May 1;14(3):285-305. doi: 10.1080/15250000902839963.
9
Efficient subwindow search: a branch and bound framework for object localization.
IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2129-42. doi: 10.1109/TPAMI.2009.144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验