Suppr超能文献

一种利用对象-动作交互上下文进行目标识别的高效贝叶斯方法。

An Efficient Bayesian Approach to Exploit the Context of Object-Action Interaction for Object Recognition.

作者信息

Yoon Sungbaek, Park Hyunjin, Yi Juneho

机构信息

School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Korea.

School of Information and Communication Engineering, North University of China, Taiyuan 03000, China.

出版信息

Sensors (Basel). 2016 Jun 25;16(7):981. doi: 10.3390/s16070981.

Abstract

This research features object recognition that exploits the context of object-action interaction to enhance the recognition performance. Since objects have specific usages, and human actions corresponding to these usages can be associated with these objects, human actions can provide effective information for object recognition. When objects from different categories have similar appearances, the human action associated with each object can be very effective in resolving ambiguities related to recognizing these objects. We propose an efficient method that integrates human interaction with objects into a form of object recognition. We represent human actions by concatenating poselet vectors computed from key frames and learn the probabilities of objects and actions using random forest and multi-class AdaBoost algorithms. Our experimental results show that poselet representation of human actions is quite effective in integrating human action information into object recognition.

摘要

本研究的特点是利用对象 - 动作交互的上下文来增强识别性能的目标识别。由于对象具有特定用途,并且与这些用途相对应的人类动作可以与这些对象相关联,因此人类动作可以为目标识别提供有效信息。当来自不同类别的对象具有相似外观时,与每个对象相关联的人类动作在解决与识别这些对象相关的模糊性方面非常有效。我们提出了一种将人类与对象的交互整合到目标识别形式中的有效方法。我们通过连接从关键帧计算出的姿态向量来表示人类动作,并使用随机森林和多类AdaBoost算法学习对象和动作的概率。我们的实验结果表明,人类动作的姿态表示在将人类动作信息整合到目标识别中非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5cf/4970032/247f9d7fde18/sensors-16-00981-g001.jpg

相似文献

2
3-D object recognition using 2-D views.
IEEE Trans Image Process. 2008 Nov;17(11):2236-55. doi: 10.1109/TIP.2008.2003404.
3
Observing human-object interactions: using spatial and functional compatibility for recognition.
IEEE Trans Pattern Anal Mach Intell. 2009 Oct;31(10):1775-89. doi: 10.1109/TPAMI.2009.83.
4
Scaling Human-Object Interaction Recognition in the Video through Zero-Shot Learning.
Comput Intell Neurosci. 2021 Jun 9;2021:9922697. doi: 10.1155/2021/9922697. eCollection 2021.
5
The importance of object similarity in the production and identification of actions associated with objects.
J Int Neuropsychol Soc. 2007 Nov;13(6):1021-34. doi: 10.1017/S1355617707071287.
6
Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses.
IEEE Trans Pattern Anal Mach Intell. 2012 Sep;34(9):1691-703. doi: 10.1109/TPAMI.2012.67.
7
Multi-class remote sensing object recognition based on discriminative sparse representation.
Appl Opt. 2016 Feb 20;55(6):1381-94. doi: 10.1364/AO.55.001381.
8
Learning the compositional nature of visual object categories for recognition.
IEEE Trans Pattern Anal Mach Intell. 2010 Mar;32(3):501-16. doi: 10.1109/TPAMI.2009.22.
9
Integrated contextual representation for objects' identities and their locations.
J Cogn Neurosci. 2008 Mar;20(3):371-88. doi: 10.1162/jocn.2008.20027.
10
Quantifying and transferring contextual information in object detection.
IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):762-77. doi: 10.1109/TPAMI.2011.164.

引用本文的文献

1
L-Tree: A Local-Area-Learning-Based Tree Induction Algorithm for Image Classification.
Sensors (Basel). 2018 Jan 20;18(1):306. doi: 10.3390/s18010306.

本文引用的文献

1
Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses.
IEEE Trans Pattern Anal Mach Intell. 2012 Sep;34(9):1691-703. doi: 10.1109/TPAMI.2012.67.
2
Weakly supervised learning of interactions between humans and objects.
IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):601-14. doi: 10.1109/TPAMI.2011.158.
3
Observing human-object interactions: using spatial and functional compatibility for recognition.
IEEE Trans Pattern Anal Mach Intell. 2009 Oct;31(10):1775-89. doi: 10.1109/TPAMI.2009.83.
4
Representation of local geometry in the visual system.
Biol Cybern. 1987;55(6):367-75. doi: 10.1007/BF00318371.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验