Departamento de Química Biológica/Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, IQUIBICEN/INQUIMAE-UBA/CONICET, Universidad de Buenos Aires, Ciudad Universitaria , Intendente Güiraldes 2160, Pabellón II, Buenos Aires C1428EGA, Argentina.
Department of Chemistry, University of Florida , PO Box 117200, Gainesville, Florida 32611-7200, United States.
J Am Chem Soc. 2016 Jul 20;138(28):8742-51. doi: 10.1021/jacs.6b02016. Epub 2016 Jul 8.
Intrinsically disordered proteins (IDPs) are a set of proteins that lack a definite secondary structure in solution. IDPs can acquire tertiary structure when bound to their partners; therefore, the recognition process must also involve protein folding. The nature of the transition state (TS), structured or unstructured, determines the binding mechanism. The characterization of the TS has become a major challenge for experimental techniques and molecular simulations approaches since diffusion, recognition, and binding is coupled to folding. In this work we present atomistic molecular dynamics (MD) simulations that sample the free energy surface of the coupled folding and binding of the transcription factor c-myb to the cotranscription factor CREB binding protein (CBP). This process has been recently studied and became a model to study IDPs. Despite the plethora of available information, we still do not know how c-myb binds to CBP. We performed a set of atomistic biased MD simulations running a total of 15.6 μs. Our results show that c-myb folds very fast upon binding to CBP with no unique pathway for binding. The process can proceed through both structured or unstructured TS's with similar probabilities. This finding reconciles previous seemingly different experimental results. We also performed Go-type coarse-grained MD of several structured and unstructured models that indicate that coupled folding and binding follows a native contact mechanism. To the best of our knowledge, this is the first atomistic MD simulation that samples the free energy surface of the coupled folding and binding processes of IDPs.
无定形蛋白质(IDPs)是一组在溶液中缺乏明确二级结构的蛋白质。IDPs 与它们的伴侣结合时可以获得三级结构;因此,识别过程也必须涉及蛋白质折叠。过渡态(TS)的性质(结构化或非结构化)决定了结合机制。由于扩散、识别和结合与折叠偶联,TS 的特性已成为实验技术和分子模拟方法的主要挑战。在这项工作中,我们提出了原子分子动力学(MD)模拟,这些模拟采样了转录因子 c-myb 与共转录因子 CREB 结合蛋白(CBP)的偶联折叠和结合的自由能表面。这个过程最近已经被研究过,并成为研究 IDPs 的模型。尽管有大量的可用信息,但我们仍然不知道 c-myb 如何与 CBP 结合。我们进行了一组原子偏见 MD 模拟,总共运行了 15.6 μs。我们的结果表明,c-myb 在与 CBP 结合时折叠非常快,没有独特的结合途径。该过程可以通过结构或非结构 TS 以相似的概率进行。这一发现调和了先前看似不同的实验结果。我们还对几个结构和非结构模型进行了 Go 型粗粒 MD 模拟,表明偶联折叠和结合遵循天然接触机制。据我们所知,这是第一个采样 IDPs 偶联折叠和结合过程自由能表面的原子 MD 模拟。