Suppr超能文献

溴化阻燃剂与Fe2O3的热循环利用

Thermal Recycling of Brominated Flame Retardants with Fe2O3.

作者信息

Altarawneh Mohammednoor, Ahmed Oday H, Jiang Zhong-Tao, Dlugogorski Bogdan Z

机构信息

School of Engineering & Information Technology, Murdoch University , Murdoch, Western Australia 6150, Australia.

出版信息

J Phys Chem A. 2016 Aug 4;120(30):6039-47. doi: 10.1021/acs.jpca.6b04910. Epub 2016 Jul 20.

Abstract

Plastics containing brominated flame retardants (BFRs) constitute the major fraction of nonmetallic content in e-waste. Co-pyrolysis of BFRs with hematite (Fe2O3) represents a viable option for the thermal recycling of BFRs. Consensus of experimental findings confirms the excellent bromine fixation ability of Fe2O3 and the subsequent formation of iron bromides. This contribution provides a comprehensive mechanistic account of the primary reactions between a cluster model of Fe2O3 and major bromine-bearing products from the decomposition of tetrabromobisphenol A (TBBA), the most commonly deployed BFR. We estimate the thermo-kinetic parameters for interactions of Fe2O3 with HBr, brominated alkanes and alkenes, bromobenzene, and bromophenol. Dissociative addition of HBr at a Fe-O bond proceeds through a trivial barrier of 8.2 kcal/mol with fitted parameters in the Arrhenius equation of k(T) = 7.96 × 10(11) exp(-6400/RT) s(-1). The facile and irreversible nature for HBr addition to Fe2O3 accords with the experimentally reported 90% reduction in HBr emission when Fe2O3 interacts with TBBA pyrolysates. A detailed kinetic analysis indicates that, transformation of Fe2O3 into iron bromides and oxybromides occurs via successive addition of HBr to Fe(Br)-O(H) entities. Elimination of a water molecule proceeds through an intramolecular H transfer. A direct elimination one-step mechanism operates in the dehydrohalogenation of bromoethane into ethene over Fe2O3. Dissociative decomposition and direct elimination channels assume comparable reaction rates in formation of acetylene from vinyl bromide. Results from this study provide an atomic-based insight into a promising thermal recycling route of e-waste.

摘要

含有溴化阻燃剂(BFRs)的塑料构成了电子垃圾中非金属成分的主要部分。BFRs与赤铁矿(Fe2O3)的共热解是BFRs热回收的一个可行选择。实验结果的一致性证实了Fe2O3出色的溴固定能力以及随后铁溴化物的形成。本论文全面阐述了Fe2O3簇模型与四溴双酚A(TBBA,最常用的BFR)分解产生的主要含溴产物之间的初级反应机理。我们估算了Fe2O3与HBr、溴代烷烃和烯烃、溴苯以及溴酚相互作用的热动力学参数。HBr在Fe-O键处的离解加成通过一个8.2 kcal/mol的微小势垒进行,其阿累尼乌斯方程中的拟合参数为k(T) = 7.96 × 10(11) exp(-6400/RT) s(-1)。HBr加成到Fe2O3上的容易程度和不可逆性与实验报道的当Fe2O3与TBBA热解产物相互作用时HBr排放量降低90%相符。详细的动力学分析表明,Fe2O3向铁溴化物和溴氧化物的转化是通过HBr连续加成到Fe(Br)-O(H)实体上实现的。水分子的消除通过分子内H转移进行。在Fe2O3上溴乙烷脱氢生成乙烯的过程中,直接消除一步机理起作用。在由氯乙烯形成乙炔的过程中,离解分解和直接消除通道的反应速率相当。本研究结果为电子垃圾一种有前景的热回收途径提供了基于原子层面的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验