de la Torre B, Ellner M, Pou P, Nicoara N, Pérez Rubén, Gómez-Rodríguez J M
Departamento de Fisica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Departamento de Fisica Teorica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Phys Rev Lett. 2016 Jun 17;116(24):245502. doi: 10.1103/PhysRevLett.116.245502. Epub 2016 Jun 16.
We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.
我们表明,非接触原子力显微镜(AFM)对弱耦合二维材料(如金属上的石墨烯)在原子尺度极限下的局部刚度敏感。我们在超高真空和低温下的大幅AFM形貌和耗散图像解析了Pt(111)上石墨烯中的原子和莫尔图案,尽管其几何起伏极低。通过基于密度泛函理论计算的多尺度模型确定了成像机制,其中石墨烯全局和局部变形的能量成本与短程化学和长程范德华相互作用相互竞争。原子对比度与短程针尖-样品相互作用有关,而耗散可以通过弱耦合石墨烯层中的全局变形来理解。值得注意的是,观察到的莫尔调制与局部平面内石墨烯-衬底相互作用的细微变化有关,为在原子尺度上探索二维材料的局部力学性能开辟了一条新途径。