Bionanotechnology & Nanobiosensor Research Laboratory, Biophysics Unit, CBSH, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar 263145, India.
Bionanotechnology & Nanobiosensor Research Laboratory, Biophysics Unit, CBSH, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar 263145, India.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Jan 5;170:14-8. doi: 10.1016/j.saa.2016.06.053. Epub 2016 Jun 29.
Nano-biosensors are excellent monitoring tools for rapid, specific, sensitive, inexpensive, in-field, on-line, and/or real-time detection of pathogens in foods, soil, air, and water samples. A variety of nano-materials (metallic, polymeric, and/or carbon-based) were employed to enhance the efficacy, efficiency, and sensitivity of these nano-biosensors, including graphene-based materials, especially graphene oxide (GO)-based materials. GO bears many oxygen-bearing groups, enabling ligand conjugation at the high density critical for sensitive detection. We have fabricated GO-modified nano-porous polycarbonate track-etched (PCTE) membranes that were conjugated to an Escherichia coli-specific antibody (Ab) and used to detect E. coli. The random distribution of nanopores on the PCTE membrane surface and the bright coating of the GO onto the membrane were confirmed by scanning electron microscope. Anti-E. coli β-gal Abs were conjugated to the GO surface via 1-ethyl-3,3-dimethylaminopropyl carbodiimide hydrochloride-N-hydroxysuccinimide chemistry; antibody coating was confirmed by the presence of a characteristic IR peak near 1600cm(-1). A non-corresponding Ab (anti-Pseudomonas) was used as a negative control under identical conditions. When E. coli interacted anti-E.coli β-gal with Ab-coated GO-nano-biosensor units, we observed a clear shift in the IR peak from 3373.14 to 3315cm(-1); in contrast, we did not observe any shift in IR peaks when the GO unit was coated with the non-corresponding Ab (anti-Pseudomonas). Therefore, the detection of E. coli using the described GO-nano-sensor unit is highly specific, is highly selective and can be applied for real-time monitoring of E. coli with a detection limit between 100μg/mL and 10μg/mL, similar to existing detection systems.
纳米生物传感器是用于快速、特异性、灵敏、廉价、现场、在线和/或实时检测食品、土壤、空气和水样中病原体的优秀监测工具。各种纳米材料(金属、聚合物和/或基于碳的材料)被用于提高这些纳米生物传感器的功效、效率和灵敏度,包括基于石墨烯的材料,特别是氧化石墨烯(GO)基材料。GO 带有许多含氧基团,能够在高浓度下进行配体偶联,从而实现灵敏检测。我们已经制造了 GO 修饰的纳米多孔聚碳酸酯轨迹蚀刻(PCTE)膜,该膜与大肠杆菌特异性抗体(Ab)偶联,并用于检测大肠杆菌。通过扫描电子显微镜证实了 PCTE 膜表面上纳米孔的随机分布和 GO 对膜的明亮涂覆。大肠杆菌的β-半乳糖苷抗体通过 1-乙基-3,3-二甲基氨基丙基碳化二亚胺盐酸盐-N-羟基琥珀酰亚胺化学与 GO 表面偶联;通过在 1600cm(-1) 附近存在特征 IR 峰来证实抗体涂层的存在。在相同条件下,将非对应 Ab(抗假单胞菌)用作阴性对照。当大肠杆菌与 Ab 涂层的 GO-纳米生物传感器单元相互作用时,我们观察到 IR 峰从 3373.14 清晰地移动到 3315cm(-1);相比之下,当 GO 单元被非对应 Ab(抗假单胞菌)涂层时,我们没有观察到 IR 峰的任何移动。因此,使用所述 GO-纳米传感器单元检测大肠杆菌具有高度特异性、高度选择性,并且可以用于实时监测,检测限在 100μg/mL 到 10μg/mL 之间,与现有检测系统相似。