Suppr超能文献

氧化还原信号传导:从自由基到衰老的演变。

Redox signaling: An evolution from free radicals to aging.

作者信息

Forman Henry Jay

机构信息

Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States.

出版信息

Free Radic Biol Med. 2016 Aug;97:398-407. doi: 10.1016/j.freeradbiomed.2016.07.003. Epub 2016 Jul 5.

Abstract

Redox biology has evolved from studies of the pathology that involves oxidants to an understanding of how oxidants participate in normal as well as aberrant signal transduction. Although the concept that signal transduction involved changes in the redox state dates from the 1930s, the modern history of redox biology began with the discovery of superoxide dismutase by McCord and Fridovich. The initial focus was on free radicals and damage of macromolecules, which remains an important topic. But, over time it was realized that hydroperoxides, especially H2O2 produced by NADPH oxidases, and electrophiles derived from lipid peroxidation or metabolism, played essential roles in physiologically relevant signaling. The mechanisms through which H2O2 and other electrophiles signal became an important area of study that provided insight into how these reactive molecules were involved in major signaling pathways and regulation of transcription factors. Thus, the field of redox signaling that is the overlap of signal transduction with redox biology was established. Alterations in redox signaling are observed in aging, but we also now know that redox signaling is essential in physiological homeostasis and that sustained deviation from redox homeostasis results in disease. This is a review of the history of redox biology from a personal perspective of nearly fifty years working in this field that hopefully provides some insights for the reader.

摘要

氧化还原生物学已从对涉及氧化剂的病理学研究发展到对氧化剂如何参与正常以及异常信号转导的理解。尽管信号转导涉及氧化还原状态变化的概念可追溯到20世纪30年代,但氧化还原生物学的现代历史始于麦考德和弗里多维奇发现超氧化物歧化酶。最初的重点是自由基和大分子损伤,这仍然是一个重要的课题。但是,随着时间的推移,人们意识到氢过氧化物,尤其是由NADPH氧化酶产生的H2O2,以及脂质过氧化或代谢产生的亲电试剂,在生理相关信号传导中发挥着重要作用。H2O2和其他亲电试剂发出信号的机制成为一个重要的研究领域,为这些反应性分子如何参与主要信号通路和转录因子调控提供了见解。因此,氧化还原信号转导领域,即信号转导与氧化还原生物学的重叠部分,得以确立。在衰老过程中观察到氧化还原信号转导的改变,但我们现在也知道氧化还原信号转导在生理稳态中至关重要,而持续偏离氧化还原稳态会导致疾病。这是一篇从在该领域近五十年工作的个人视角对氧化还原生物学历史的综述,希望能为读者提供一些见解。

相似文献

1
Redox signaling: An evolution from free radicals to aging.
Free Radic Biol Med. 2016 Aug;97:398-407. doi: 10.1016/j.freeradbiomed.2016.07.003. Epub 2016 Jul 5.
2
Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
Arch Toxicol. 2016 Jan;90(1):1-37. doi: 10.1007/s00204-015-1579-5. Epub 2015 Sep 7.
3
Antioxidants and HNE in redox homeostasis.
Free Radic Biol Med. 2017 Oct;111:87-101. doi: 10.1016/j.freeradbiomed.2016.11.033. Epub 2016 Nov 22.
4
Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
Free Radic Biol Med. 2013 Sep;64:4-11. doi: 10.1016/j.freeradbiomed.2013.07.025. Epub 2013 Jul 21.
5
Free radicals in the physiological control of cell function.
Physiol Rev. 2002 Jan;82(1):47-95. doi: 10.1152/physrev.00018.2001.
6
Redox homeostasis: The Golden Mean of healthy living.
Redox Biol. 2016 Aug;8:205-15. doi: 10.1016/j.redox.2016.01.010. Epub 2016 Jan 19.
9
Free radical biology for medicine: learning from nonalcoholic fatty liver disease.
Free Radic Biol Med. 2013 Dec;65:952-968. doi: 10.1016/j.freeradbiomed.2013.08.174. Epub 2013 Aug 29.
10
Free radicals, metals and antioxidants in oxidative stress-induced cancer.
Chem Biol Interact. 2006 Mar 10;160(1):1-40. doi: 10.1016/j.cbi.2005.12.009. Epub 2006 Jan 23.

引用本文的文献

2
Oat Bran Hydrolysates Alleviate Oxidative Stress and Inflammation in d-Galactose-Induced Aging Mice.
Food Sci Nutr. 2025 Jun 17;13(6):e70433. doi: 10.1002/fsn3.70433. eCollection 2025 Jun.
5
Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in .
Antioxidants (Basel). 2025 Jan 10;14(1):76. doi: 10.3390/antiox14010076.
6
Involvement of ROS signal in aging and regulation of brain functions.
J Physiol Sci. 2025 Mar;75(1):100003. doi: 10.1016/j.jphyss.2024.100003. Epub 2024 Dec 21.
7
Fructose-mediated AGE-RAGE axis: approaches for mild modulation.
Front Nutr. 2024 Dec 4;11:1500375. doi: 10.3389/fnut.2024.1500375. eCollection 2024.
9
The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials.
Biochem Pharmacol. 2024 Oct;228:116186. doi: 10.1016/j.bcp.2024.116186. Epub 2024 Mar 30.
10
Oxidative Stress and Bio-Regulation.
Int J Mol Sci. 2024 Mar 15;25(6):3360. doi: 10.3390/ijms25063360.

本文引用的文献

1
Glutathione - From antioxidant to post-translational modifier.
Arch Biochem Biophys. 2016 Apr 1;595:64-7. doi: 10.1016/j.abb.2015.11.019.
2
Redox homeostasis: The Golden Mean of healthy living.
Redox Biol. 2016 Aug;8:205-15. doi: 10.1016/j.redox.2016.01.010. Epub 2016 Jan 19.
3
Alteration of serum lipid profile, SRB1 loss, and impaired Nrf2 activation in CDKL5 disorder.
Free Radic Biol Med. 2015 Sep;86:156-65. doi: 10.1016/j.freeradbiomed.2015.05.010. Epub 2015 May 22.
4
TGFβ1 rapidly activates Src through a non-canonical redox signaling mechanism.
Arch Biochem Biophys. 2015 Feb 15;568:1-7. doi: 10.1016/j.abb.2015.01.001. Epub 2015 Jan 10.
5
An overview of mechanisms of redox signaling.
J Mol Cell Cardiol. 2014 Aug;73:2-9. doi: 10.1016/j.yjmcc.2014.01.018. Epub 2014 Feb 8.
6
How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo.
Free Radic Biol Med. 2014 Jan;66:24-35. doi: 10.1016/j.freeradbiomed.2013.05.045. Epub 2013 Jun 6.
7
Physiological roles of mitochondrial reactive oxygen species.
Mol Cell. 2012 Oct 26;48(2):158-67. doi: 10.1016/j.molcel.2012.09.025.
9
Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments.
Free Radic Biol Med. 2012 May 1;52(9):2038-46. doi: 10.1016/j.freeradbiomed.2012.02.042. Epub 2012 Mar 6.
10
Aberrant regulation of the MRP3 gene in non-small cell lung carcinoma.
J Thorac Oncol. 2012 Jan;7(1):34-9. doi: 10.1097/JTO.0b013e318233d753.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验