Suppr超能文献

一种用于超声容积可视化的快速三维自适应双边滤波器。

A fast 3D adaptive bilateral filter for ultrasound volume visualization.

作者信息

Kwon Koojoo, Kim Min-Su, Shin Byeong-Seok

机构信息

Department of Computer Science and Information Engineering, Inha University, Incheon, Republic of Korea.

Department of Computer Science and Information Engineering, Inha University, Incheon, Republic of Korea.

出版信息

Comput Methods Programs Biomed. 2016 Sep;133:25-34. doi: 10.1016/j.cmpb.2016.05.008. Epub 2016 May 24.

Abstract

BACKGROUND AND OBJECTIVE

This paper introduces an effective noise removal method for medical ultrasound volume data. Ultrasound data usually need to be filtered because they contain significant noise. Conventional two-dimensional (2D) filtering methods cannot use the implicit information between adjacent layers, and existing 3D filtering methods are slow because of complicated filter kernels. Even though one filter method utilizes simple filters for speed, it is inefficient at removing noise and does not take into account the characteristics of ultrasound sampling. To solve this problem, we introduce a fast filtering method using parallel bilateral filtering and adjust the filter window size proportionally according to its position.

METHODS

We devised a parallel bilateral filtering by obtaining a 3D summed area table of a quantized spatial filter. The filtering method is made adaptive by changing the kernel window size according to the distance from the ultrasound signal transmission point.

RESULTS

Experiments were performed to compare the noise removal and loss of original data of the anisotropic diffusion filtering, bilateral filtering, and adaptive bilateral filtering of ultrasound volume-rendered images. The results show that the adaptive filter correctly takes into account the sampling characteristics of the ultrasound volumes.

CONCLUSIONS

The proposed method can more efficiently remove noise and minimize distortion from ultrasound data than existing simple or non-adaptive filtering methods.

摘要

背景与目的

本文介绍一种用于医学超声容积数据的有效去噪方法。超声数据通常因其包含大量噪声而需要进行滤波。传统的二维(2D)滤波方法无法利用相邻层之间的隐含信息,并且现有的三维滤波方法由于滤波内核复杂而速度较慢。尽管有一种滤波方法为了提高速度而使用简单滤波器,但它在去除噪声方面效率低下,且未考虑超声采样的特性。为解决此问题,我们引入一种使用并行双边滤波的快速滤波方法,并根据其位置按比例调整滤波器窗口大小。

方法

我们通过获取量化空间滤波器的三维求和面积表来设计并行双边滤波。通过根据与超声信号传输点的距离改变内核窗口大小,使该滤波方法具有自适应性。

结果

进行实验以比较超声容积渲染图像的各向异性扩散滤波、双边滤波和自适应双边滤波在去噪和原始数据损失方面的情况。结果表明,自适应滤波器正确考虑了超声容积的采样特性。

结论

与现有的简单或非自适应滤波方法相比,所提出的方法能够更有效地去除超声数据中的噪声并使失真最小化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验