Suppr超能文献

睡美人转座酶活性的结构决定因素

Structural Determinants of Sleeping Beauty Transposase Activity.

作者信息

Abrusán György, Yant Stephen R, Szilágyi András, Marsh Joseph A, Mátés Lajos, Izsvák Zsuzsanna, Barabás Orsolya, Ivics Zoltán

机构信息

MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK.

Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.

出版信息

Mol Ther. 2016 Aug;24(8):1369-77. doi: 10.1038/mt.2016.110. Epub 2016 Jun 6.

Abstract

Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold.

摘要

转座酶是基因组工程中的重要工具,人们对设计出更高效的转座酶有着浓厚的兴趣。在此,我们试图利用睡美人转座酶来了解决定其活性的因素。最近的研究表明,蛋白质共进化信息可用于将物理上相连且共同进化的残基分组为称为“扇区”的元件,事实证明这些元件有助于理解蛋白质的折叠、变构相互作用和酶活性。通过广泛的诱变数据、蛋白质建模和折叠能分析,我们发现:(i)睡美人转座酶包含两个扇区,它们跨越保守结构域,且富含DNA结合残基,这表明转座酶的DNA结合和内切核酸酶功能共同进化;(ii)扇区残基对突变高度敏感,这些残基的大多数突变会大幅降低转座率;(iii)转座酶DDE结构域中对折叠自由能有强烈影响的突变会显著降低转座率。(iv)影响DNA和蛋白质-蛋白质相互作用的突变通常会降低转座率,尽管大多数超活性突变体也位于蛋白质表面,包括具有蛋白质-蛋白质相互作用的残基。这表明超活性是由蛋白质相互作用的改变导致的,而非蛋白质折叠的稳定。

相似文献

1
Structural Determinants of Sleeping Beauty Transposase Activity.睡美人转座酶活性的结构决定因素
Mol Ther. 2016 Aug;24(8):1369-77. doi: 10.1038/mt.2016.110. Epub 2016 Jun 6.
3
Defining functional regions of the IS903 transposase.确定IS903转座酶的功能区域。
J Mol Biol. 1997 Dec 12;274(4):491-504. doi: 10.1006/jmbi.1997.1410.
8
Comparative sequence analysis of IS50/Tn5 transposase.IS50/Tn5转座酶的比较序列分析
J Bacteriol. 2004 Dec;186(24):8240-7. doi: 10.1128/JB.186.24.8240-8247.2004.

引用本文的文献

本文引用的文献

2
Protein sectors: statistical coupling analysis versus conservation.蛋白质区段:统计耦合分析与保守性
PLoS Comput Biol. 2015 Feb 27;11(2):e1004091. doi: 10.1371/journal.pcbi.1004091. eCollection 2015 Feb.
3
Structural role of the flanking DNA in mariner transposon excision.侧翼DNA在水手转座子切除中的结构作用。
Nucleic Acids Res. 2015 Feb 27;43(4):2424-32. doi: 10.1093/nar/gkv096. Epub 2015 Feb 8.
4
A series of PDB-related databanks for everyday needs.一系列满足日常需求的与蛋白质数据银行(PDB)相关的数据库。
Nucleic Acids Res. 2015 Jan;43(Database issue):D364-8. doi: 10.1093/nar/gku1028. Epub 2014 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验