Suppr超能文献

肠出血性大肠杆菌常见血清型的基本繁殖数及传播动力学

Basic Reproduction Number and Transmission Dynamics of Common Serogroups of Enterohemorrhagic Escherichia coli.

作者信息

Chen Shi, Sanderson Michael W, Lee Chihoon, Cernicchiaro Natalia, Renter David G, Lanzas Cristina

机构信息

Department of Public Health Sciences, University of North Carolina Charlotte, Charlotte, North Carolina, USA Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA

Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA.

出版信息

Appl Environ Microbiol. 2016 Aug 30;82(18):5612-20. doi: 10.1128/AEM.00815-16. Print 2016 Sep 15.

Abstract

UNLABELLED

Understanding the transmission dynamics of pathogens is essential to determine the epidemiology, ecology, and ways of controlling enterohemorrhagic Escherichia coli (EHEC) in animals and their environments. Our objective was to estimate the epidemiological fitness of common EHEC strains in cattle populations. For that purpose, we developed a Markov chain model to characterize the dynamics of 7 serogroups of enterohemorrhagic Escherichia coli (O26, O45, O103, O111, O121, O145, and O157) in cattle production environments based on a set of cross-sectional data on infection prevalence in 2 years in two U.S. states. The basic reproduction number (R0) was estimated using a Bayesian framework for each serogroup based on two criteria (using serogroup alone [the O-group data] and using O serogroup, Shiga toxin gene[s], and intimin [eae] gene together [the EHEC data]). In addition, correlations between external covariates (e.g., location, ambient temperature, dietary, and probiotic usage) and prevalence/R0 were quantified. R0 estimates varied substantially among different EHEC serogroups, with EHEC O157 having an R0 of >1 (∼1.5) and all six other EHEC serogroups having an R0 of less than 1. Using the O-group data substantially increased R0 estimates for the O26, O45, and O103 serogroups (R0 > 1) but not for the others. Different covariates had distinct influences on different serogroups: the coefficients for each covariate were different among serogroups. Our modeling and analysis of this system can be readily expanded to other pathogen systems in order to estimate the pathogen and external factors that influence spread of infectious agents.

IMPORTANCE

In this paper we describe a Bayesian modeling framework to estimate basic reproduction numbers of multiple serotypes of Shiga toxin-producing Escherichia coli according to a cross-sectional study. We then coupled a compartmental model to reconstruct the infection dynamics of these serotypes and quantify their risk in the population. We incorporated different sensitivity levels of detecting different serotypes and evaluated their potential influence on the estimation of basic reproduction numbers.

摘要

未标注

了解病原体的传播动态对于确定动物及其环境中肠出血性大肠杆菌(EHEC)的流行病学、生态学和控制方法至关重要。我们的目标是估计常见EHEC菌株在牛群中的流行病学适应性。为此,我们基于美国两个州两年内感染患病率的一组横断面数据,开发了一个马尔可夫链模型,以描述牛生产环境中7个肠出血性大肠杆菌血清型(O26、O45、O103、O111、O121、O145和O157)的动态。基于两个标准(仅使用血清型[O组数据]以及同时使用O血清型、志贺毒素基因和紧密素[eae]基因[EHEC数据]),使用贝叶斯框架为每个血清型估计基本繁殖数(R0)。此外,还对外部协变量(如位置、环境温度、饮食和益生菌使用情况)与患病率/R0之间的相关性进行了量化。不同EHEC血清型的R0估计值差异很大,EHEC O157的R0大于1(约为1.5),其他六种EHEC血清型的R0均小于1。使用O组数据显著提高了O26、O45和O103血清型的R0估计值(R0>1),但对其他血清型没有影响。不同的协变量对不同的血清型有不同的影响:每个协变量的系数在血清型之间是不同的。我们对该系统的建模和分析可以很容易地扩展到其他病原体系统,以估计影响传染病传播的病原体和外部因素。

重要性

在本文中,我们描述了一个贝叶斯建模框架,根据横断面研究估计产志贺毒素大肠杆菌多种血清型的基本繁殖数。然后,我们结合一个分区模型来重建这些血清型的感染动态,并量化它们在人群中的风险。我们纳入了检测不同血清型的不同灵敏度水平,并评估了它们对基本繁殖数估计的潜在影响。

相似文献

1
Basic Reproduction Number and Transmission Dynamics of Common Serogroups of Enterohemorrhagic Escherichia coli.
Appl Environ Microbiol. 2016 Aug 30;82(18):5612-20. doi: 10.1128/AEM.00815-16. Print 2016 Sep 15.
5
Prevalence of Shiga toxin-producing Escherichia coli and associated virulence genes in feces of commercial feedlot cattle.
Foodborne Pathog Dis. 2013 Oct;10(10):835-41. doi: 10.1089/fpd.2013.1526. Epub 2013 Aug 2.
7
Prevalence of Shiga toxin-producing Escherichia coli in pasture-based dairy herds.
Lett Appl Microbiol. 2019 Feb;68(2):112-119. doi: 10.1111/lam.13096. Epub 2018 Nov 29.
9
Applicability of a multiplex PCR to detect O26, O45, O103, O111, O121, O145, and O157 serogroups of Escherichia coli in cattle feces.
Vet Microbiol. 2012 May 4;156(3-4):381-8. doi: 10.1016/j.vetmic.2011.11.017. Epub 2011 Nov 28.

引用本文的文献

1
Wastewater surveillance beyond COVID-19: a ranking system for communicable disease testing in the tri-county Detroit area, Michigan, USA.
Front Public Health. 2023 Jun 2;11:1178515. doi: 10.3389/fpubh.2023.1178515. eCollection 2023.
2
Association of Atypical Enteropathogenic Escherichia coli with Diarrhea and Related Mortality in Kittens.
J Clin Microbiol. 2017 Sep;55(9):2719-2735. doi: 10.1128/JCM.00403-17. Epub 2017 Jun 28.

本文引用的文献

2
"Preharvest" Food Safety for Escherichia coli O157 and Other Pathogenic Shiga Toxin-Producing Strains.
Microbiol Spectr. 2014 Oct;2(5). doi: 10.1128/microbiolspec.EHEC-0021-2013.
4
The influence of diurnal temperature variation on degree-day accumulation and insect life history.
PLoS One. 2015 Mar 19;10(3):e0120772. doi: 10.1371/journal.pone.0120772. eCollection 2015.
5
Further development of sample preparation and detection methods for O157 and the top 6 non-O157 STEC serogroups in cattle feces.
J Microbiol Methods. 2014 Oct;105:22-30. doi: 10.1016/j.mimet.2014.06.020. Epub 2014 Jul 12.
7
Prevalence of Shiga toxin-producing Escherichia coli and associated virulence genes in feces of commercial feedlot cattle.
Foodborne Pathog Dis. 2013 Oct;10(10):835-41. doi: 10.1089/fpd.2013.1526. Epub 2013 Aug 2.
8
Investigating effects of between- and within-host variability on Escherichia coli O157 shedding pattern and transmission.
Prev Vet Med. 2013 Apr 1;109(1-2):47-57. doi: 10.1016/j.prevetmed.2012.09.012. Epub 2012 Oct 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验