Suppr超能文献

通过晶体学对E2(泛素结合酶9)同型二聚体的观察。

Observation of an E2 (Ubc9)-homodimer by crystallography.

作者信息

Alontaga Aileen Y, Ambaye Nigus D, Li Yi-Jia, Vega Ramir, Chen Chih-Hong, Bzymek Krzysztof P, Williams John C, Hu Weidong, Chen Yuan

机构信息

Department of Molecular Medicine, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010, United States.

出版信息

Data Brief. 2016 Feb 12;7:195-200. doi: 10.1016/j.dib.2016.02.015. eCollection 2016 Jun.

Abstract

Post-translational modifications by the small ubiquitin-like modifiers (SUMO), in particular the formation of poly-SUMO-2 and -3 chains, regulates essential cellular functions and its aberration leads to life-threatening diseases (Geoffroy and Hay, 2009) [1]. It was shown previously that the non-covalent interaction between SUMO and the conjugating enzyme (E2) for SUMO, known as Ubc9, is required for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. However, the structure of SUMO-Ubc9 non-covalent complex, by itself, could not explain how the poly-SUMO-2/3 chain forms and consequently a Ubc9 homodimer, although never been observed, was proposed for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. Here, we solved the crystal structure of a heterotrimer containing a homodimer of Ubc9 and the RWD domain from RWDD3. The asymmetric Ubc9 homodimer is mediated by the N-terminal region of one Ubc9 molecule and a surface near the catalytic Cys of the second Ubc9 molecule (Fig. 1A). This N-terminal surface of Ubc9 that is involved in the homodimer formation also interacts with the RWD domain, the ubiquitin-fold domain of the SUMO activating enzyme (E1), SUMO, and the E3 ligase, RanBP2 (Knipscheer et al., 2007; Tong et al.. 1997; Tatham et al., 2005; Reverter and Lima, 2005; Capili and Lima, 2007; Wang et al., 2009, 2010; Wang and Chen, 2010; Alontaga et al., 2015) [2], [3], [4], [5], [6], [7], [8], [9], [10]. The existence of the Ubc9 homodimer in solution is supported by previously published solution NMR studies of rotational correlation time and chemical shift perturbation (Alontaga et al., 2015; Yuan et al., 1999) [10], [11]. Site-directed mutagenesis and biochemical analysis suggests that this dimeric arrangement of Ubc9 is likely important for poly-SUMO chain formation (Fig. 1B and C). The asymmetric Ubc9 homodimer described for the first time in this work could provide the critical missing link in the poly-SUMO chain formation mechanism. The data presented here are related to the research article entitled, "RWD domain as an E2 (Ubc9) interaction module" (Alontaga et al., 2015) [10]. The data of the crystal structure has been deposited to RCSB protein data bank with identifier: 4Y1L.

摘要

小泛素样修饰物(SUMO)介导的翻译后修饰,特别是多聚SUMO-2和-3链的形成,调控着细胞的基本功能,其异常会导致危及生命的疾病(Geoffroy和Hay,2009年)[1]。先前的研究表明,SUMO与SUMO缀合酶(E2)(即Ubc9)之间的非共价相互作用是多聚SUMO-2/3链形成所必需的(Knipscheer等人,2007年)[2]。然而,SUMO-Ubc9非共价复合物自身的结构无法解释多聚SUMO-2/3链是如何形成的,因此有人提出一种从未被观察到的Ubc9同型二聚体参与多聚SUMO-2/3链的形成(Knipscheer等人,2007年)[2]。在此,我们解析了一个异源三聚体的晶体结构,该异源三聚体包含Ubc9的同型二聚体和来自RWDD3的RWD结构域。不对称的Ubc9同型二聚体由一个Ubc9分子的N端区域和第二个Ubc9分子催化半胱氨酸附近的一个表面介导(图1A)。Ubc9参与同型二聚体形成的这个N端表面还与RWD结构域、SUMO激活酶(E1)的泛素折叠结构域、SUMO以及E3连接酶RanBP2相互作用(Knipscheer等人,2007年;Tong等人,1997年;Tatham等人,2005年;Reverter和Lima,2005年;Capili和Lima,2007年;Wang等人,2009年、2010年;Wang和Chen,2010年;Alontaga等人,2015年)[2]、[3]、[4]、[5]、[6]、[7]、[8]、[9]、[10]。先前发表的关于旋转相关时间和化学位移扰动的溶液核磁共振研究支持了溶液中Ubc9同型二聚体的存在(Alontaga等人,2015年;Yuan等人,1999年)[10]、[11]。定点诱变和生化分析表明,Ubc9的这种二聚体排列可能对多聚SUMO链的形成很重要(图1B和C)。本文首次描述的不对称Ubc9同型二聚体可能为多聚SUMO链形成机制中关键的缺失环节提供了解释。此处呈现的数据与题为“RWD结构域作为E2(Ubc9)相互作用模块”的研究论文相关(Alontaga等人,2015年)[10]。晶体结构数据已存入RCSB蛋白质数据库,标识符为:4Y1L。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b1d/4927773/6180e3ab3371/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验