Suppr超能文献

基于量子力学/分子力学计算的纯有机分子中静电相互作用诱导的室温磷光

Electrostatic Interaction-Induced Room-Temperature Phosphorescence in Pure Organic Molecules from QM/MM Calculations.

作者信息

Ma Huili, Shi Wen, Ren Jiajun, Li Wenqiang, Peng Qian, Shuai Zhigang

机构信息

Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China.

Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China.

出版信息

J Phys Chem Lett. 2016 Aug 4;7(15):2893-8. doi: 10.1021/acs.jpclett.6b01156. Epub 2016 Jul 15.

Abstract

Room temperature phosphorescence (RTP) from pure organic material is rare due to the low phosphorescence quantum efficiency. That is why the recent discovery of crystallization induced RTP for several organic molecules aroused strong interests. Through a combined quantum and molecular mechanics CASPT2/AMBER scheme taking terephthalic acid (TPA) as example, we found that electrostatic interaction not only can induce an enhanced radiative decay T1 → S0 through the dipole-allowed S1 intermediate state, but also can hinder the nonradiative decay process upon crystallization. From gas phase to crystal, the nature of S1 state is converted to (1)(π,π*) from (1)(n,π*) character, enhancing transition dipole moment and serving as an efficient intermediate radiative pathway for T1 → S0 transition, and eventually leading to a boosted RTP. The intermolecular packing also blocks the nonradiative decay channel of the high-frequency C═O stretching vibration with large vibronic coupling, rather than the conventional low-frequency aromatic rotation in crystal. This mechanism also holds for other organic compounds that contain both ketones and aromatic rings.

摘要

由于磷光量子效率较低,纯有机材料产生室温磷光(RTP)的情况较为罕见。这就是为何最近几种有机分子的结晶诱导RTP的发现引起了强烈关注。以对苯二甲酸(TPA)为例,通过量子力学和分子力学相结合的CASPT2/AMBER方法,我们发现静电相互作用不仅可以通过偶极允许的S1中间态诱导增强的辐射衰变T1→S0,而且在结晶时还能阻碍非辐射衰变过程。从气相到晶体,S1态的性质从(1)(n,π*)特征转变为(1)(π,π*),增强了跃迁偶极矩,并为T1→S0跃迁提供了一条有效的中间辐射途径,最终导致RTP增强。分子间堆积还阻碍了具有大振动耦合的高频C═O伸缩振动的非辐射衰变通道,而不是晶体中传统的低频芳环旋转。这种机制也适用于其他同时含有酮和芳环的有机化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验