Department of Physics, Southeast University, Nanjing 211189, China.
Laboratoire d'Optique Appliquée, ENSTA ParisTech, CNRS, Ecole Polytechnique, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France.
Phys Rev E. 2016 Jun;93(6):062202. doi: 10.1103/PhysRevE.93.062202. Epub 2016 Jun 7.
We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.
我们借助一个恰当的立方-五次非线性薛定谔方程,阐明了游隼孤子的基本形式及其频率啁啾特性。通过简单的规范变换,我们获得了一个精确的通用游隼孤子解,它统一了最近研究最多的基本反常孤子种类。我们发现,这种适用于聚焦和散焦 Kerr 非线性的游隼孤子,在保持原始游隼孤子的特征强度特性的同时,可以表现出额外的双局域啁啾,因此称之为啁啾游隼孤子。在自散焦非线性介质中存在啁啾游隼孤子,可以归因于当三阶色散不能平衡自陡峭效应时的存在。尽管调制不稳定性开始出现,我们的数值模拟还是证实了这种啁啾游隼孤子的稳健性。