Kuleta Patryk, Sarewicz Marcin, Postila Pekka, Róg Tomasz, Osyczka Artur
Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Kraków, Poland.
Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
Biochim Biophys Acta. 2016 Oct;1857(10):1661-8. doi: 10.1016/j.bbabio.2016.07.003. Epub 2016 Jul 12.
Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site.
描述蛋白质中质子转移的动力学具有挑战性,但对于理解将其用于生物功能的过程至关重要。在呼吸作用或光合作用的关键酶之一细胞色素bc1中,质子转移参与了在两个不同催化位点发生的对苯二酚(QH2)氧化和醌(Q)还原过程。在这里,我们通过定点诱变评估了Lys251/Asp252对(细菌编号)在电子转移以及与之相关的向醌还原位点(Qi位点)的质子摄取中的作用。我们发现,251或252位不存在可质子化基团会显著改变电子反应的平衡水平,包括Qi位点介导的血红素bH氧化、对苯二酚对血红素bH的反向还原以及血红素bH/ Qi半醌平衡。这暗示了氢键网络在醌/半醌结合以及定义Q/SQ/QH2三元组热力学性质中的作用。只有当两个可质子化基团都被去除时,Lys251/Asp252质子路径才会被阻断。当这一对中只有一个可质子化残基时,质子进入催化位点的过程仍能维持,尽管速率较低,这表明质子可以通过平行路径移动,可能涉及水分子。这表明只要所有可用于功能协作的元素确保将质子高效递送至催化位点,质子路径就会表现出对变化的工程耐受性。