Suppr超能文献

皮肤驻留树突状细胞通过巨胞饮作用摄取合成的裸RNA,可使小鼠体内发生抗原表达并诱导T细胞反应。

Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice.

作者信息

Selmi Abderraouf, Vascotto Fulvia, Kautz-Neu Kordula, Türeci Özlem, Sahin Ugur, von Stebut Esther, Diken Mustafa, Kreiter Sebastian

机构信息

TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany.

Research Center for Immunotherapy (FZI), University Medical Center of Johannes Gutenberg University, Mainz, Germany.

出版信息

Cancer Immunol Immunother. 2016 Sep;65(9):1075-83. doi: 10.1007/s00262-016-1869-7. Epub 2016 Jul 15.

Abstract

Intradermal administration of antigen-encoding RNA has entered clinical testing for cancer vaccination. However, insight into the underlying mechanism of RNA uptake, translation and antigen presentation is still limited. Utilizing pharmacologically optimized naked RNA, the dose-response kinetics revealed a rise in reporter signal with increasing RNA amounts and a prolonged RNA translation of reporter protein up to 30 days after intradermal injection. Dendritic cells (DCs) in the dermis were shown to engulf RNA, and the signal arising from the reporter RNA was significantly diminished after DC depletion. Macropinocytosis was relevant for intradermal RNA uptake and translation in vitro and in vivo. By combining intradermal RNA vaccination and inhibition of macropinocytosis, we show that effective priming of antigen-specific CD8(+) T-cells also relies on this uptake mechanism. This report demonstrates that direct antigen translation by dermal DCs after intradermal naked RNA vaccination is relevant for efficient priming of antigen-specific T-cells.

摘要

编码抗原的RNA皮内给药已进入癌症疫苗接种的临床试验。然而,对RNA摄取、翻译和抗原呈递的潜在机制的了解仍然有限。利用药理学优化的裸RNA,剂量反应动力学显示,随着RNA量的增加,报告信号增强,且皮内注射后报告蛋白的RNA翻译可延长至30天。真皮中的树突状细胞(DCs)被证明可吞噬RNA,DCs耗竭后,报告RNA产生的信号显著减弱。巨胞饮作用在体外和体内与皮内RNA摄取及翻译相关。通过将皮内RNA疫苗接种与巨胞饮作用抑制相结合,我们发现抗原特异性CD8(+) T细胞的有效启动也依赖于这种摄取机制。本报告表明,皮内裸RNA疫苗接种后真皮DCs的直接抗原翻译与抗原特异性T细胞的有效启动相关。

相似文献

4
Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity.
Cancer Res. 2010 Nov 15;70(22):9031-40. doi: 10.1158/0008-5472.CAN-10-0699. Epub 2010 Nov 2.
5
Uptake routes of tumor-antigen MAGE-A3 by dendritic cells determine priming of naïve T-cell subtypes.
Cancer Immunol Immunother. 2012 Nov;61(11):2079-90. doi: 10.1007/s00262-012-1272-y. Epub 2012 May 6.
10
Tobacco mosaic virus efficiently targets DC uptake, activation and antigen-specific T cell responses in vivo.
Vaccine. 2014 Jul 16;32(33):4228-33. doi: 10.1016/j.vaccine.2014.04.051. Epub 2014 Jun 9.

引用本文的文献

1
Therapeutic Application of mRNA for Genetic Diseases.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 May-Jun;17(3):e70019. doi: 10.1002/wnan.70019.
2
Ribonuclease activity undermines immune sensing of naked extracellular RNA.
Cell Genom. 2025 May 14;5(5):100874. doi: 10.1016/j.xgen.2025.100874. Epub 2025 May 6.
3
Recent strategies for enhanced delivery of mRNA to the lungs.
Nanomedicine (Lond). 2025 May;20(9):1043-1069. doi: 10.1080/17435889.2025.2485669. Epub 2025 Apr 7.
4
Recent advances and perspectives on the development of circular RNA cancer vaccines.
NPJ Vaccines. 2025 Mar 1;10(1):41. doi: 10.1038/s41541-025-01097-x.
5
mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy.
Biomark Res. 2024 Dec 18;12(1):157. doi: 10.1186/s40364-024-00692-9.
6
Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials.
J Nanobiotechnology. 2024 Oct 4;22(1):601. doi: 10.1186/s12951-024-02882-x.
7
mRNA vaccines: a new era in vaccine development.
Oncol Res. 2024 Sep 18;32(10):1543-1564. doi: 10.32604/or.2024.043987. eCollection 2024.
8
Frameworks for transformational breakthroughs in RNA-based medicines.
Nat Rev Drug Discov. 2024 Jun;23(6):421-444. doi: 10.1038/s41573-024-00943-2. Epub 2024 May 13.
9
Ribonuclease activity undermines immune sensing of naked extracellular RNA.
bioRxiv. 2024 Apr 23:2024.04.23.590771. doi: 10.1101/2024.04.23.590771.
10
Carrier-free mRNA vaccine induces robust immunity against SARS-CoV-2 in mice and non-human primates without systemic reactogenicity.
Mol Ther. 2024 May 1;32(5):1266-1283. doi: 10.1016/j.ymthe.2024.03.022. Epub 2024 Apr 2.

本文引用的文献

2
The skin immune system Its cellular constituents and their interactions.
Immunol Today. 1986 Jul-Aug;7(7-8):235-40. doi: 10.1016/0167-5699(86)90111-8.
3
Intradermal vaccination for rabies prophylaxis: conceptualization, evolution, present status and future.
Expert Rev Vaccines. 2014 May;13(5):641-55. doi: 10.1586/14760584.2014.901893. Epub 2014 Mar 21.
4
Developing mRNA-vaccine technologies.
RNA Biol. 2012 Nov;9(11):1319-30. doi: 10.4161/rna.22269. Epub 2012 Oct 12.
5
The multitasking organ: recent insights into skin immune function.
Immunity. 2011 Dec 23;35(6):857-69. doi: 10.1016/j.immuni.2011.12.003.
6
Tumor vaccination using messenger RNA: prospects of a future therapy.
Curr Opin Immunol. 2011 Jun;23(3):399-406. doi: 10.1016/j.coi.2011.03.007. Epub 2011 Apr 13.
8
Determinants of intracellular RNA pharmacokinetics: Implications for RNA-based immunotherapeutics.
RNA Biol. 2011 Jan-Feb;8(1):35-43. doi: 10.4161/rna.8.1.13767. Epub 2011 Jan 1.
10
Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity.
Cancer Res. 2010 Nov 15;70(22):9031-40. doi: 10.1158/0008-5472.CAN-10-0699. Epub 2010 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验