Waszczak Cezary, Kerchev Pavel I, Mühlenbock Per, Hoeberichts Frank A, Van Der Kelen Katrien, Mhamdi Amna, Willems Patrick, Denecker Jordi, Kumpf Robert P, Noctor Graham, Messens Joris, Van Breusegem Frank
Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Structural Biology Brussels Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Division of Plant Biology, Department of Biosciences, Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland.
Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
Plant Cell. 2016 Aug;28(8):1844-59. doi: 10.1105/tpc.16.00038. Epub 2016 Jul 18.
Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.
过氧化氢(H₂O₂)可作为一种信号分子,影响植物生长发育的各个方面,包括胁迫信号传导和细胞死亡。为了分析调节植物细胞对升高的H₂O₂水平作出反应的分子机制,我们聚焦于拟南芥中缺乏过氧化氢酶2(CAT2)活性的突变体(cat2-2)中依赖光呼吸的过氧化物酶体H₂O₂产生。通过筛选可减弱PSII最大效率(Fv'/Fm')下降和与cat2-2表型相关的损伤形成的第二位点突变,我们发现SHORT-ROOT(SHR)中的一个突变在促进光呼吸的条件下挽救了cat2-2植物的细胞死亡表型。在暴露于光呼吸胁迫时,SHR缺陷在cat2-2遗传背景下减弱了H₂O₂依赖性基因表达、谷胱甘肽池的氧化和抗坏血酸的消耗。乙醇酸氧化酶和过氧化氢酶活性的降低以及乙醇酸的积累进一步表明,SHR缺陷通过限制过氧化物酶体H₂O₂的产生影响细胞氧化还原稳态。尽管cat2-2 shr-6双突变体中细胞死亡的减弱需要外源蔗糖,但cat2-2突变体的光呼吸表型并不依赖于SHR功能相互作用因子SCARECROW和糖信号成分脱落酸不敏感4。我们的研究结果揭示了SHR与光呼吸H₂O₂产生之间的联系,这对发育和胁迫反应的整合具有重要意义。