Suppr超能文献

采用罕见事件逻辑回归来预测夏威夷主要岛屿间中光层硬珊瑚的分布情况。

The implementation of rare events logistic regression to predict the distribution of mesophotic hard corals across the main Hawaiian Islands.

作者信息

Veazey Lindsay M, Franklin Erik C, Kelley Christopher, Rooney John, Frazer L Neil, Toonen Robert J

机构信息

Department of Biology, University of Hawaii at Manoa , Honolulu , HI , United States.

School of Ocean and Earth Science and Technology, University of Hawaii, Hawaii Institute of Marine Biology , Kaneohe , HI , United States.

出版信息

PeerJ. 2016 Jul 6;4:e2189. doi: 10.7717/peerj.2189. eCollection 2016.

Abstract

Predictive habitat suitability models are powerful tools for cost-effective, statistically robust assessment of the environmental drivers of species distributions. The aim of this study was to develop predictive habitat suitability models for two genera of scleractinian corals (Leptoserisand Montipora) found within the mesophotic zone across the main Hawaiian Islands. The mesophotic zone (30-180 m) is challenging to reach, and therefore historically understudied, because it falls between the maximum limit of SCUBA divers and the minimum typical working depth of submersible vehicles. Here, we implement a logistic regression with rare events corrections to account for the scarcity of presence observations within the dataset. These corrections reduced the coefficient error and improved overall prediction success (73.6% and 74.3%) for both original regression models. The final models included depth, rugosity, slope, mean current velocity, and wave height as the best environmental covariates for predicting the occurrence of the two genera in the mesophotic zone. Using an objectively selected theta ("presence") threshold, the predicted presence probability values (average of 0.051 for Leptoseris and 0.040 for Montipora) were translated to spatially-explicit habitat suitability maps of the main Hawaiian Islands at 25 m grid cell resolution. Our maps are the first of their kind to use extant presence and absence data to examine the habitat preferences of these two dominant mesophotic coral genera across Hawai'i.

摘要

预测性栖息地适宜性模型是用于对物种分布的环境驱动因素进行经济高效、统计稳健评估的强大工具。本研究的目的是为在夏威夷主要岛屿的中光层发现的两种石珊瑚(细薄星珊瑚属和蔷薇珊瑚属)开发预测性栖息地适宜性模型。中光层(30 - 180米)难以到达,因此历史上研究较少,因为它介于水肺潜水员的最大深度极限和潜水器的最小典型工作深度之间。在此,我们实施了带有罕见事件校正的逻辑回归,以解决数据集中存在观测值稀缺的问题。这些校正降低了系数误差,并提高了两个原始回归模型的总体预测成功率(分别为73.6%和74.3%)。最终模型将深度、粗糙度、坡度、平均流速和波高作为预测这两个属在中光层出现的最佳环境协变量。使用客观选择的θ(“存在”)阈值,预测的存在概率值(细薄星珊瑚属平均为0.051,蔷薇珊瑚属平均为0.040)被转换为分辨率为25米网格单元的夏威夷主要岛屿的空间明确栖息地适宜性地图。我们的地图是同类地图中首个利用现存的存在和不存在数据来研究夏威夷这两个主要中光层珊瑚属的栖息地偏好的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49cf/4941748/4bfad484dcd0/peerj-04-2189-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验