Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
Fusion Science Center, University of Rochester, Rochester, New York 14623, USA.
Phys Rev Lett. 2016 Jul 8;117(2):025001. doi: 10.1103/PhysRevLett.117.025001. Epub 2016 Jul 7.
A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.
从 X 射线和核诊断推断出,在 60 束、30kJ、351nm 的 OMEGA 激光系统上,直接驱动惯性约束聚变低温层状氘氚内爆的燃料热点压力 P_{hs}=56±7 Gbar。当按流体力学比例缩小到国家点火装置的能量时,这些内爆实现了 Lawson 参数约为点火所需值的 60%[A. Bose 等人,Phys. Rev. E 93, 011201(R) (2016)],类似于间接驱动内爆[R. Betti 等人,Phys. Rev. Lett. 114, 255003 (2015)],并且接近直接驱动点火阈值压力的一半。与对称的一维模拟相比,推断出的热点压力大约低 40%。三维模拟表明,由激光驱动不均匀性和目标定位误差引发的热点低阶模式失真降低了目标性能。