Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University , 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
ISIS-CCLRC, Rutherford Appleton Laboratory , Chilton, Oxon OX11 0QX, U.K.
Langmuir. 2016 Nov 29;32(47):12413-12422. doi: 10.1021/acs.langmuir.6b01670. Epub 2016 Aug 5.
Water-in-supercritical CO microemulsions formed using the hybrid F-H surfactant sodium 1-oxo-1-[4-(perfluorohexyl)phenyl]hexane-2-sulfonate, FC6-HC4, have recently been shown to have the highest water-solubilizing power ever reported. FC6-HC4 demonstrated the ability to outperform not only other surfactants but also other FCm-HCn analogues containing different fluorocarbon and hydrocarbon chain lengths (Sagisaka, M. et al. Langmuir 2015, 31, 7479-7487). With the aim of clarifying the key structural features of this surfactant, this study examined the phase behavior and water/supercritical CO aggregate formation of 1-oxo-1-[4-(perfluorohexyl)phenyl]hexane (Nohead FC6-HC4), which is an FC6-HC4 analogue but now, interestingly, without the sulfonate headgroup. Surprisingly, Nohead FC6-HC4, which would not normally be identified as a classic surfactant, yielded transparent single-phase W/CO microemulsions with polar cores able to solubilize a water-soluble dye, even at pressures and temperatures so low as to approach the critical point of CO (e.g., ∼100 bar at 35 °C). High-pressure small-angle scattering (SANS) measurements revealed the transparent phases to consist of ellipsoidal nanodroplets of water. The morphology of these droplets was shown to be dependent on the pressure, Nohead FC6-HC4 concentration, and water-to-surfactant molar ratio. Despite having almost the same structure as Nohead FC6-HC4, analogues containing both shorter and longer hydrocarbons were unable to form W/CO microemulsion droplets. This shows the importance of the role of the hydrocarbon chain in the stabilization of W/CO microemulsions. A detailed examination of the mechanism of Nohead FC6-HC4 adsorption onto the water surface suggests that the hexanoyl group protrudes into the aqueous core, allowing for association between the carbonyl group and water.
使用混合 F-H 表面活性剂 1-氧代-1-[4-(全氟己基)苯基]己烷-2-磺酸钠(FC6-HC4)形成的超临界 CO2 中的水微乳液最近被证明具有迄今为止报道的最高水增溶能力。FC6-HC4 表现出不仅优于其他表面活性剂而且优于具有不同氟碳和碳氢链长度的其他 FCm-HCn 类似物(Sagisaka,M.等人,Langmuir 2015,31,7479-7487)的能力。为了阐明该表面活性剂的关键结构特征,本研究检查了 1-氧代-1-[4-(全氟己基)苯基]己烷(Nohead FC6-HC4)的相行为和水/超临界 CO2 聚集体形成,Nohead FC6-HC4 是 FC6-HC4 的类似物,但现在有趣的是,没有磺酸钠头基。令人惊讶的是,Nohead FC6-HC4 通常不会被认为是经典表面活性剂,但即使在压力和温度如此低以至于接近 CO 临界点的情况下(例如,在 35°C 下约 100 巴),也能生成具有极性核的透明单相 W/CO 微乳液,能够溶解水溶性染料。高压小角散射(SANS)测量表明,透明相由水的椭圆形纳米液滴组成。这些液滴的形态被证明取决于压力、Nohead FC6-HC4 浓度和水与表面活性剂的摩尔比。尽管具有几乎相同的结构,但含有较短和较长烃的类似物均不能形成 W/CO 微乳液液滴。这表明烃链在稳定 W/CO 微乳液中的作用非常重要。对 Nohead FC6-HC4 在水表面上吸附的机制的详细研究表明,己酰基基团突出到水核中,允许羰基与水之间发生缔合。