Perkett Matthew R, Mirijanian Dina T, Hagan Michael F
Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA.
J Chem Phys. 2016 Jul 21;145(3):035101. doi: 10.1063/1.4955187.
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
我们使用全原子模拟来阐明噬菌体MS2衣壳蛋白构象转换和变构作用的潜在机制。大多数二十面体病毒衣壳的组装要求衣壳蛋白在衣壳内的精确位置采用不同的构象。研究表明,来自MS2基因组的一个19个核苷酸的茎环(TR)作为变构效应物,在衣壳组装过程中引导衣壳蛋白的构象转换。由于主要的构象变化发生在远离TR结合位点的地方,因此了解这种变构通讯的分子机制很重要。为此,我们使用结合显式水的全原子模拟以及路径采样技术,在存在和不存在TR结合的情况下对MS2衣壳蛋白的构象转变进行采样。计算结果发现,TR结合强烈改变了转变自由能分布,导致有利构象发生切换。我们讨论了导致这种转变的分子相互作用的变化。然后,我们识别出具有相关运动的氨基酸网络,以揭示TR结合效应跨越蛋白质的机制。我们发现,TR结合强烈影响组装衣壳中位于五重和准六重界面处的残基,这表明TR结合可能指导天然衣壳几何形状形成的一种机制。该分析预测了通过诱变替代后可能改变构象亚态群体或其转变速率的氨基酸。