Suppr超能文献

噬菌体MS2中的变构转换机制。

The allosteric switching mechanism in bacteriophage MS2.

作者信息

Perkett Matthew R, Mirijanian Dina T, Hagan Michael F

机构信息

Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA.

出版信息

J Chem Phys. 2016 Jul 21;145(3):035101. doi: 10.1063/1.4955187.

Abstract

We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

摘要

我们使用全原子模拟来阐明噬菌体MS2衣壳蛋白构象转换和变构作用的潜在机制。大多数二十面体病毒衣壳的组装要求衣壳蛋白在衣壳内的精确位置采用不同的构象。研究表明,来自MS2基因组的一个19个核苷酸的茎环(TR)作为变构效应物,在衣壳组装过程中引导衣壳蛋白的构象转换。由于主要的构象变化发生在远离TR结合位点的地方,因此了解这种变构通讯的分子机制很重要。为此,我们使用结合显式水的全原子模拟以及路径采样技术,在存在和不存在TR结合的情况下对MS2衣壳蛋白的构象转变进行采样。计算结果发现,TR结合强烈改变了转变自由能分布,导致有利构象发生切换。我们讨论了导致这种转变的分子相互作用的变化。然后,我们识别出具有相关运动的氨基酸网络,以揭示TR结合效应跨越蛋白质的机制。我们发现,TR结合强烈影响组装衣壳中位于五重和准六重界面处的残基,这表明TR结合可能指导天然衣壳几何形状形成的一种机制。该分析预测了通过诱变替代后可能改变构象亚态群体或其转变速率的氨基酸。

相似文献

1
The allosteric switching mechanism in bacteriophage MS2.
J Chem Phys. 2016 Jul 21;145(3):035101. doi: 10.1063/1.4955187.
2
Dynamic allostery controls coat protein conformer switching during MS2 phage assembly.
J Mol Biol. 2010 Feb 5;395(5):916-23. doi: 10.1016/j.jmb.2009.11.016. Epub 2009 Nov 12.
3
Viral genomic single-stranded RNA directs the pathway toward a T=3 capsid.
J Mol Biol. 2010 Feb 5;395(5):924-36. doi: 10.1016/j.jmb.2009.11.018. Epub 2009 Nov 12.
4
Crystal structures of MS2 capsids with mutations in the subunit FG loop.
J Mol Biol. 1996 Feb 23;256(2):330-9. doi: 10.1006/jmbi.1996.0089.
5
Effects of amino acid substitution on the thermal stability of MS2 capsids lacking genomic RNA.
FEBS Lett. 1993 Nov 22;334(3):355-9. doi: 10.1016/0014-5793(93)80711-3.
8
Dissecting the key recognition features of the MS2 bacteriophage translational repression complex.
Nucleic Acids Res. 1998 Mar 1;26(5):1337-44. doi: 10.1093/nar/26.5.1337.
9
A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid.
J Mol Biol. 2007 Jun 1;369(2):541-52. doi: 10.1016/j.jmb.2007.03.020. Epub 2007 Mar 15.
10
A Multiscale Model for the Self-Assembly of Coat Proteins in Bacteriophage MS2.
J Chem Inf Model. 2019 Sep 23;59(9):3899-3909. doi: 10.1021/acs.jcim.9b00514. Epub 2019 Aug 23.

引用本文的文献

1
RNA-induced Allosteric Coupling Drives Viral Capsid Assembly.
PRX Life. 2024 Mar;2(1). doi: 10.1103/prxlife.2.013012. Epub 2024 Mar 12.
2
Stability and conformational memory of electrosprayed and rehydrated bacteriophage MS2 virus coat proteins.
Curr Res Struct Biol. 2022 Nov 4;4:338-348. doi: 10.1016/j.crstbi.2022.10.001. eCollection 2022.
3
Equilibrium mechanisms of self-limiting assembly.
Rev Mod Phys. 2021 Apr-Jun;93(2). doi: 10.1103/revmodphys.93.025008. Epub 2021 Jun 11.
4
Supramolecular assembly of protein building blocks: from folding to function.
Nano Converg. 2022 Jan 13;9(1):4. doi: 10.1186/s40580-021-00294-3.
5
Visualizing a viral genome with contrast variation small angle X-ray scattering.
J Biol Chem. 2020 Nov 20;295(47):15923-15932. doi: 10.1074/jbc.RA120.013961. Epub 2020 Sep 10.
6
A Multiscale Model for the Self-Assembly of Coat Proteins in Bacteriophage MS2.
J Chem Inf Model. 2019 Sep 23;59(9):3899-3909. doi: 10.1021/acs.jcim.9b00514. Epub 2019 Aug 23.
7
MS2 bacteriophage capsid studied using all-atom molecular dynamics.
Interface Focus. 2019 Jun 6;9(3):20180081. doi: 10.1098/rsfs.2018.0081. Epub 2019 Apr 19.

本文引用的文献

1
Influence of RNA Binding on the Structure and Dynamics of the Lassa Virus Nucleoprotein.
Biophys J. 2016 Mar 29;110(6):1246-54. doi: 10.1016/j.bpj.2016.02.008.
2
Calculation of the Local Free Energy Landscape in the Restricted Region by the Modified Tomographic Method.
J Phys Chem B. 2016 Mar 31;120(12):3061-71. doi: 10.1021/acs.jpcb.5b11892. Epub 2016 Mar 22.
3
Perspective: Computer simulations of long time dynamics.
J Chem Phys. 2016 Feb 14;144(6):060901. doi: 10.1063/1.4940794.
4
Comparison between Mean Forces and Swarms-of-Trajectories String Methods.
J Chem Theory Comput. 2014 Feb 11;10(2):524-33. doi: 10.1021/ct400606c.
5
Extended Phase-Space Methods for Enhanced Sampling in Molecular Simulations: A Review.
Front Bioeng Biotechnol. 2015 Sep 3;3:125. doi: 10.3389/fbioe.2015.00125. eCollection 2015.
6
MDN: A Web Portal for Network Analysis of Molecular Dynamics Simulations.
Biophys J. 2015 Sep 15;109(6):1110-6. doi: 10.1016/j.bpj.2015.06.013. Epub 2015 Jul 2.
7
Free energy landscape of activation in a signalling protein at atomic resolution.
Nat Commun. 2015 Jun 15;6:7284. doi: 10.1038/ncomms8284.
8
Dynamic architecture of a protein kinase.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4623-31. doi: 10.1073/pnas.1418402111. Epub 2014 Oct 15.
9
Recent computational advances in the identification of allosteric sites in proteins.
Drug Discov Today. 2014 Oct;19(10):1595-600. doi: 10.1016/j.drudis.2014.07.012. Epub 2014 Aug 11.
10
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验