Suppr超能文献

聚合物表面吸附作为一种改善石墨烯纳米片生物相容性的策略。

Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets.

作者信息

Pinto Artur M, Moreira J Agostinho, Magalhães Fernão D, Gonçalves Inês C

机构信息

LEPABE - Laboratory for Process, Environment, Biotechnology and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; INEB - National Institute of Biomedical Engineering, University of Porto, Rua do Campo Alegre, 823, 50-180 Porto, Portugal; i3S - Institute for Innovation and Health Research, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.

IFIMUP and IN - Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.

出版信息

Colloids Surf B Biointerfaces. 2016 Oct 1;146:818-24. doi: 10.1016/j.colsurfb.2016.07.031. Epub 2016 Jul 14.

Abstract

The biointeractions of graphene-based materials depend on their physico-chemical properties. These properties can be manipulated by polymer adsorption. Graphene nanoplatelets (GNP-C) were modified with PVA, HEC, PEG, PVP, chondroitin, glucosamine, and hyaluronic acid. These materials were characterized by SEM, DLS, XPS, Raman spectroscopy, and TGA. Surface adsorption was confirmed for all polymers. Biocompatibility evaluation showed that all of these materials induced low haemolysis (<1.7%) at concentrations up to 500μgmL(-1). GNP-C-PVA and GNP-C-HEC presented the lowest haemolysis percentages and were therefore more thoroughly studied. The morphology of HFF-1 cells was investigated by microscopy (optical, fluorescence, TEM) in order to evaluate interactions with GNP materials. Small GNP-C nanoplatelets were observed to enter cells independently of the surface treatment. For pristine GNP-C at a concentration of 50μgmL(-1), ROS production increased 4.4-fold. This effect is lower for GNP-C-PVA (3.3-fold) and higher for GNP-C-HEC (5.1-fold). Resazurin assays showed that GNP-C caused toxicity in HFF-1 cells at concentrations above 20μgmL(-1) at 24h, which decreased at 48 and 72h. PVA surface adsorption rendered GNP-C non-toxic at concentrations up to 50μgmL(-1). LIVE/DEAD assays showed that at 20 and 50μgmL(-1) cell death is significantly lower for GNP-C-PVA compared to pristine GNP-C. Modification of nanoplatelets with HEC resulted in no benefit in terms of biocompatibility, whereas PVA considerably improved the biocompatibility.

摘要

基于石墨烯的材料的生物相互作用取决于其物理化学性质。这些性质可通过聚合物吸附来调控。用聚乙烯醇(PVA)、羟乙基纤维素(HEC)、聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、软骨素、氨基葡萄糖和透明质酸对石墨烯纳米片(GNP-C)进行了改性。通过扫描电子显微镜(SEM)、动态光散射(DLS)、X射线光电子能谱(XPS)、拉曼光谱和热重分析(TGA)对这些材料进行了表征。证实了所有聚合物的表面吸附。生物相容性评估表明,所有这些材料在浓度高达500μg/mL时诱导的溶血率较低(<1.7%)。GNP-C-PVA和GNP-C-HEC的溶血率最低,因此对其进行了更深入的研究。通过显微镜(光学显微镜、荧光显微镜、透射电子显微镜)研究了人包皮成纤维细胞(HFF-1)的形态,以评估与GNP材料的相互作用。观察到小的GNP-C纳米片可独立于表面处理进入细胞。对于浓度为50μg/mL的原始GNP-C,活性氧(ROS)生成增加了4.4倍。GNP-C-PVA的这种效应较低(3.3倍),而GNP-C-HEC的效应较高(5.1倍)。刃天青试验表明,GNP-C在24小时时浓度高于20μg/mL时对HFF-1细胞具有毒性,在48小时和72小时时毒性降低。PVA表面吸附使GNP-C在浓度高达50μg/mL时无毒。活/死试验表明,在20和50μg/mL时,与原始GNP-C相比,GNP-C-PVA的细胞死亡率显著降低。用HEC对纳米片进行改性在生物相容性方面没有益处,而PVA则显著提高了生物相容性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验