Suppr超能文献

PLGA 有缺陷粒子自组装的机理研究及其在生物医学成像中的潜在应用。

Mechanistic Studies on the Self-Assembly of PLGA Patchy Particles and Their Potential Applications in Biomedical Imaging.

机构信息

Bioengineering Department, George Mason University , 4400 University Drive, MS 1G5, Fairfax, Virginia 22030, United States.

Krasnow Institute for Advanced Study, George Mason University , 4400 University Drive, MS 2A1, Fairfax, Virginia 22030, United States.

出版信息

Langmuir. 2016 Aug 9;32(31):7929-42. doi: 10.1021/acs.langmuir.6b02177. Epub 2016 Jul 29.

Abstract

Currently, several challenges prevent poly(lactic-co-glycolic acid) (PLGA) particles from reaching clinical settings. Among these is a lack of understanding of the molecular mechanisms involved in the formation of these particles. We have been studying in depth the formation of patchy polymeric particles. These particles are made of PLGA and lipid-polymer functional groups. They have unique patch-core-shell structural features: hollow or solid hydrophobic cores and a patchy surface. Previously, we identified the shear stress as the most important parameter in a patchy particle's formation. Here, we investigated in detail the role of shear stress in the patchy particle's internal and external structure using an integrative experimental and computational approach. By cross-sectioning the multipatch particles, we found lipid-based structures embedded in the entire PLGA matrix, which represents a unique finding in the PLGA field. By developing novel computational fluid dynamics and molecular dynamics simulations, we found that the shear stress determines the internal structure of the patchy particles. Equally important, we discovered that these particles emit a photoacoustic (PA) signal in the optical clinical imaging window. Our results show that particles with multiple patches emit a higher PA signal than single-patch particles. This phenomenon most likely is due to the fact that multipatchy particles absorb more heat than single-patchy particles as shown by differential scanning calorimetry analysis. Furthermore, we demonstrated the use of patchy polymeric particles as photoacoustic molecular probes both in vitro and in vivo studies. The fundamental studies described here will help us to design more effective PLGA carriers for a number of medical applications as well as to accelerate their medical translation.

摘要

目前,有几个挑战阻止了聚(乳酸-共-乙醇酸)(PLGA)颗粒进入临床环境。其中包括对这些颗粒形成过程中涉及的分子机制缺乏了解。我们一直在深入研究有斑点的聚合物颗粒的形成。这些颗粒由 PLGA 和脂质-聚合物官能团组成。它们具有独特的斑点-核-壳结构特征:空心或实心疏水性核和斑点状表面。以前,我们确定剪切应力是有斑点颗粒形成的最重要参数。在这里,我们使用综合实验和计算方法详细研究了剪切应力在有斑点颗粒的内部和外部结构中的作用。通过对多斑点颗粒进行横切,我们发现了嵌入整个 PLGA 基质中的基于脂质的结构,这是 PLGA 领域的一个独特发现。通过开发新的计算流体动力学和分子动力学模拟,我们发现剪切应力决定了有斑点颗粒的内部结构。同样重要的是,我们发现这些颗粒在光学临床成像窗口中发出光声(PA)信号。我们的结果表明,具有多个斑点的颗粒比单斑点颗粒发出更高的 PA 信号。这种现象很可能是由于多斑点颗粒比单斑点颗粒吸收更多的热量,正如差示扫描量热分析所表明的那样。此外,我们还证明了有斑点聚合物颗粒在体外和体内研究中可用作光声分子探针。这里描述的基础研究将帮助我们设计更有效的 PLGA 载体,用于许多医学应用,并加速其医学转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验