Whitworth G B, Misaghi B C, Rosenthal D M, Mills E A, Heinen D J, Watson A H, Ives C W, Ali S H, Bezold K, Marsh-Armstrong N, Watson F L
Department of Biology, Washington and Lee University, Lexington, VA, United States.
Johns Hopkins University School of Medicine, Solomon H. Snyder Dept. of Neuroscience and Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States.
Dev Biol. 2017 Jun 15;426(2):360-373. doi: 10.1016/j.ydbio.2016.06.003. Epub 2016 Jul 26.
Unlike adult mammals, adult frogs regrow their optic nerve following a crush injury, making Xenopus laevis a compelling model for studying the molecular mechanisms that underlie neuronal regeneration. Using Translational Ribosome Affinity Purification (TRAP), a method to isolate ribosome-associated mRNAs from a target cell population, we have generated a transcriptional profile by RNA-Seq for retinal ganglion cells (RGC) during the period of recovery following an optic nerve injury. Based on bioinformatic analysis using the Xenopus laevis 9.1 genome assembly, our results reveal a profound shift in the composition of ribosome-associated mRNAs during the early stages of RGC regeneration. As factors involved in cell signaling are rapidly down-regulated, those involved in protein biosynthesis are up-regulated alongside key initiators of axon development. Using the new genome assembly, we were also able to analyze gene expression profiles of homeologous gene pairs arising from a whole-genome duplication in the Xenopus lineage. Here we see evidence of divergence in regulatory control among a significant proportion of pairs. Our data should provide a valuable resource for identifying genes involved in the regeneration process to target for future functional studies, in both naturally regenerative and non-regenerative vertebrates.
与成年哺乳动物不同,成年青蛙在视神经挤压伤后能够再生视神经,这使得非洲爪蟾成为研究神经元再生潜在分子机制的极具吸引力的模型。我们使用翻译核糖体亲和纯化(TRAP)技术,一种从目标细胞群体中分离核糖体相关mRNA的方法,通过RNA测序生成了视神经损伤后恢复期间视网膜神经节细胞(RGC)的转录谱。基于使用非洲爪蟾9.1基因组组装进行的生物信息学分析,我们的结果揭示了RGC再生早期核糖体相关mRNA组成的深刻变化。随着参与细胞信号传导的因子迅速下调,参与蛋白质生物合成的因子与轴突发育的关键启动因子一起上调。使用新的基因组组装,我们还能够分析非洲爪蟾谱系中全基因组复制产生的同源基因对的基因表达谱。在这里,我们看到相当一部分基因对之间存在调控差异的证据。我们的数据应为识别参与再生过程的基因提供有价值的资源,以便在自然再生和非再生脊椎动物中进行未来的功能研究。