Wu Yuanshan, Yin Guosheng
School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, China.
Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong.
Biometrics. 2017 Mar;73(1):94-103. doi: 10.1111/biom.12574. Epub 2016 Aug 1.
The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the proposed multiple imputation method and apply it to a lung cancer study as an illustration.
在治愈率分析背景下的主要挑战在于,人们永远不知道被删失的个体是已治愈还是未治愈,也不知道他们对感兴趣的事件是易感还是不易感。将易感指标视为缺失数据,我们针对具有生存比例的删失数据,提出了一种用于治愈率分位数回归的多重填补方法。我们开发了一种迭代算法来估计每个个体的条件未治愈概率。通过利用这个估计概率和伯努利样本填补,我们可以将每个个体分类为已治愈或未治愈,然后仅对未治愈个体采用局部加权方法来估计分位数回归系数。多次重复填补过程并对所得估计量求平均,我们得到了分位数回归系数的一致估计量。我们的方法放宽了通常的全局线性假设,这样我们就可以将分位数回归应用于任何感兴趣的特定分位数。我们建立了所提出估计量的渐近性质,包括一致性和渐近正态性。我们进行模拟研究以评估所提出的多重填补方法的有限样本性能,并将其应用于一项肺癌研究作为示例。