Suppr超能文献

作为可再充电非质子锂-氧电池催化剂的具有介孔的多层 Fe2O3/石墨烯复合材料。

A multi-layered Fe2O3/graphene composite with mesopores as a catalyst for rechargeable aprotic lithium-oxygen batteries.

机构信息

Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.

出版信息

Nanotechnology. 2016 Sep 9;27(36):365402. doi: 10.1088/0957-4484/27/36/365402. Epub 2016 Aug 1.

Abstract

Aprotic Li-O2 batteries have attracted a huge amount of interest in the past decade owing to their extremely high energy density. However, identifying a desirable cathodic catalyst for this promising battery system is one of the biggest challenges at present. In this work, a multi-layered Fe2O3/graphene nanosheets (Fe2O3/GNS) composite with sandwich structure was synthesized using an easy thermal casting method, and served as a cathodic catalyst for aprotic Li-O2 batteries. The aprotic Li-O2 cell with the Fe2O3/GNS catalyst demonstrated a better reversibility, lower overpotential for oxygen evolution, and a higher Coulombic efficiency (close to 100%) than those of pure GNS. An excellent rate performance and good cycle stability were also confirmed. The results, characterized by ex and in situ methods, revealed that the dominant discharge product Li2O2 was decomposed below 4.35 V. This superior electrochemical performance is mainly attributed to the unique sandwich structure of the Fe2O3/GNS catalyst with mesopores, which can provide substantially more catalytic sites and prevent direct contact between carbon and Li2O2.

摘要

无质子 Li-O2 电池由于其极高的能量密度,在过去十年中引起了极大的关注。然而,为这个有前途的电池系统找到理想的阴极催化剂是目前最大的挑战之一。在这项工作中,采用简单的热铸法合成了具有三明治结构的多层 Fe2O3/石墨烯纳米片(Fe2O3/GNS)复合材料,并将其用作非质子 Li-O2 电池的阴极催化剂。与纯 GNS 相比,具有 Fe2O3/GNS 催化剂的非质子 Li-O2 电池表现出更好的可逆性、更低的析氧过电位和更高的库仑效率(接近 100%)。还证实了优异的倍率性能和良好的循环稳定性。通过 ex 和 in situ 方法进行的表征表明,主要的放电产物 Li2O2 在 4.35 V 以下分解。这种卓越的电化学性能主要归因于 Fe2O3/GNS 催化剂独特的介孔三明治结构,它可以提供更多的催化位点,并防止碳和 Li2O2 的直接接触。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验