Martin David R, Braxton David R, Farris Alton B
Department of Pathology, Emory University, 1364 Clifton Road NE, Room H-188, Atlanta, GA, 30322, USA.
Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA.
Virchows Arch. 2016 Oct;469(4):405-15. doi: 10.1007/s00428-016-1999-5. Epub 2016 Aug 5.
Determining gastrointestinal tract dysplasia level is clinically important but can be difficult, and given this challenge, we investigated colonic and esophageal dysplastic progression using digital image analysis (IA). Whole slide images were obtained for colonic normal mucosa (NCM), hyperplastic polyps (HP), conventional tubular adenomas (TA), and adenomas with high-grade dysplasia (HGD), and esophageal intestinal metaplasia negative for dysplasia (IM), indefinite for dysplasia (IFD), low-grade dysplasia (LGD), and HGD. Characteristic nuclei were circumscribed, and parameters discriminating groups included nuclear circumference (μm), area (μm(2)), and 15 positive pixel count (PPC) algorithm IA measurements. In colon polyps and esophageal lesions, average nuclear area and circumference ranged 30-108.6 μm(2) and 27.5-48.9 μm, respectively. Differences for average nuclear area and circumference met statistical significance (p < 0.05) between diagnostic groups in the esophagus and colon, except for IM versus IFD nuclear area. Pixel intensity (brightness) separated lesions within both groups with statistical significance except for colonic TAs versus HPs and esophageal LGD versus IM. HGD nuclei in both groups demonstrated more pixel staining heterogeneity than other lesions. Hierarchical clustering and principal component analysis demonstrated that lesions with similar diagnoses tended to cluster together on a low- to high-grade spectrum. Our results confirm that quantitative IA is an effective adjunct reflecting dysplasia in colon polyps and Barrett esophagus lesions. Nuclear area, circumference, and PPC algorithm findings distinguished lesions in a statistically significant manner. This suggests utility for future studies on similar methods, which may provide an adjunctive ancillary technique for pathologists and enhance patient care.
确定胃肠道发育异常程度在临床上很重要,但可能具有挑战性。鉴于这一挑战,我们使用数字图像分析(IA)研究了结肠和食管发育异常的进展。获取了结肠正常黏膜(NCM)、增生性息肉(HP)、传统管状腺瘤(TA)和高级别发育异常腺瘤(HGD)以及食管肠化生无发育异常(IM)、发育异常不明确(IFD)、低级别发育异常(LGD)和HGD的全玻片图像。对特征性细胞核进行了界定,区分不同组别的参数包括核周长(μm)、面积(μm²)以及15个阳性像素计数(PPC)算法的IA测量值。在结肠息肉和食管病变中,平均核面积和周长分别为30 - 108.6μm²和27.5 - 48.9μm。除了IM与IFD的核面积外,食管和结肠诊断组之间平均核面积和周长的差异具有统计学意义(p < 0.05)。像素强度(亮度)在两组内均能显著区分病变,但结肠TA与HP以及食管LGD与IM除外。两组中的HGD细胞核均显示出比其他病变更多的像素染色异质性。层次聚类和主成分分析表明,具有相似诊断的病变倾向于在低级别到高级别范围内聚集在一起。我们的结果证实,定量IA是反映结肠息肉和巴雷特食管病变发育异常的有效辅助手段。核面积、周长和PPC算法结果以具有统计学意义的方式区分了病变。这表明该方法对未来类似研究具有实用性,可能为病理学家提供一种辅助技术并改善患者护理。