Kruk Danuta, Wojciechowski Milosz, Brym Szczepan, Singh Rajendra Kumar
University of Warmia & Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Słoneczna 54, PL-10710 Olsztyn, Poland.
Ionic Liquid and Solid State Ionics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005, India.
Phys Chem Chem Phys. 2016 Aug 17;18(33):23184-94. doi: 10.1039/c6cp02377k.
(1)H nuclear magnetic resonance relaxometry is applied to reveal information on the translational and rotational dynamics of the ionic liquid: 1-butyl-3-methyl imidazoliumoctyl sulfate (BMIM-OcSO4) in bulk and in a confinement formed by a nanoporous SiO2 matrix. The experimental studies were performed in a very broad frequency range, from 8 kHz to 40 MHz (referring to the (1)H resonance frequency), in order to probe motional processes at very different time scales using a single experiment, and in the temperature range of 243-303 K. The relaxation results for BMIM-OcSO4 in bulk are interpreted in terms of three relaxation contributions: a term associated with the translational dynamics of the ions (it has been assumed that the translational dynamics of cations and anions can be described by one diffusion coefficient) and two terms associated with the rotational motion of the anion and the cation, respectively. The relationships between the obtained dynamic parameters (rotational correlation times and translational diffusion coefficients) are thoroughly discussed and used as a "reference" for the dynamics of BMIM-OcSO4 confined in an SiO2 matrix. Analysis of the corresponding relaxation data for the confined liquid shows that the confinement does not significantly affect the rotational dynamics, but it has a considerable impact on the translational motion. It is demonstrated that the relaxation term associated with the translational dynamics stems from two contributions: a contribution from a core (bulk-like) fraction of the liquid and from a fraction moving near the pore surface and therefore being for some time adsorbed on the pore walls. The translational diffusion coefficient for the last fraction is determined and several conclusions regarding the residence lifetime of the ions on the surface are drawn. Moreover, an additional motional process on the timescale of ns or shorter is revealed in the confinement.
(1)氢核磁共振弛豫测量法被用于揭示离子液体1-丁基-3-甲基咪唑硫酸辛酯(BMIM-OcSO4)在本体状态以及在由纳米多孔二氧化硅基质形成的受限环境中的平移和旋转动力学信息。实验研究在非常宽的频率范围内进行,从8千赫兹到40兆赫兹(指氢共振频率),以便通过单次实验探测非常不同时间尺度上的运动过程,并且在243 - 303K的温度范围内进行。本体状态下BMIM-OcSO4的弛豫结果可根据三种弛豫贡献来解释:一项与离子的平移动力学相关(假定阳离子和阴离子的平移动力学可用一个扩散系数来描述),另外两项分别与阴离子和阳离子的旋转运动相关。对所获得的动态参数(旋转相关时间和平移扩散系数)之间的关系进行了深入讨论,并将其用作受限在二氧化硅基质中的BMIM-OcSO4动力学的“参考”。对受限液体的相应弛豫数据的分析表明,受限作用对旋转动力学没有显著影响,但对平移运动有相当大的影响。结果表明,与平移动力学相关的弛豫项来自两种贡献:一种来自液体的核心(类似本体)部分,另一种来自在孔表面附近移动并因此在一段时间内吸附在孔壁上的部分。确定了最后一部分的平移扩散系数,并得出了关于离子在表面停留寿命的若干结论。此外,在受限环境中还揭示了纳秒或更短时间尺度上的额外运动过程。