Suppr超能文献

高密度脂蛋白生物合成:确定参与人载脂蛋白A-I脂质化的结构域。

High-Density Lipoprotein Biogenesis: Defining the Domains Involved in Human Apolipoprotein A-I Lipidation.

作者信息

Pollard Ricquita D, Fulp Brian, Sorci-Thomas Mary G, Thomas Michael J

机构信息

Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina 27101, United States.

Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina 27101, United States.

出版信息

Biochemistry. 2016 Sep 6;55(35):4971-81. doi: 10.1021/acs.biochem.6b00347. Epub 2016 Aug 23.

Abstract

The first step in removing cholesterol from a cell is the ATP-binding cassette transporter 1 (ABCA1)-driven transfer of cholesterol to lipid-free or lipid-poor apolipoprotein A-I (apoA-I), which yields cholesterol-rich nascent high-density lipoprotein (nHDL) that then matures in plasma to spherical, cholesteryl ester-rich HDL. However, lipid-free apoA-I has a three-dimensional (3D) conformation that is significantly different from that of lipidated apoA-I on nHDL. By comparing the lipid-free apoA-I 3D conformation of apoA-I to that of 9-14 nm diameter nHDL, we formulated the hypothetical helical domain transitions that might drive particle formation. To test the hypothesis, ten apoA-I mutants were prepared that contained two strategically placed cysteines several of which could form intramolecular disulfide bonds and others that could not form these bonds. Mass spectrometry was used to identify amino acid sequence and intramolecular disulfide bond formation. Recombinant HDL (rHDL) formation was assessed with this group of apoA-I mutants. ABCA1-driven nHDL formation was measured in four mutants and wild-type apoA-I. The mutants contained cysteine substitutions in one of three regions: the N-terminus, amino acids 34 and 55 (E34C to S55C), central domain amino acids 104 and 162 (F104C to H162C), and the C-terminus, amino acids 200 and 233 (L200C to L233C). Mutants were studied in the locked form, with an intramolecular disulfide bond present, or unlocked form, with the cysteine thiol blocked by alkylation. Only small amounts of rHDL or nHDL were formed upon locking the central domain. We conclude that both the N- and C-terminal ends assist in the initial steps in lipid acquisition, but that opening of the central domain was essential for particle formation.

摘要

将胆固醇从细胞中移除的第一步是由ATP结合盒转运体1(ABCA1)驱动的胆固醇向无脂或低脂载脂蛋白A-I(apoA-I)的转移,这会产生富含胆固醇的新生高密度脂蛋白(nHDL),然后其在血浆中成熟为球形、富含胆固醇酯的高密度脂蛋白。然而,无脂apoA-I具有与nHDL上脂化apoA-I显著不同的三维(3D)构象。通过比较apoA-I的无脂apoA-I 3D构象与直径为9 - 14 nm的nHDL的构象,我们提出了可能驱动颗粒形成的假设性螺旋结构域转变。为了验证该假设,制备了十个apoA-I突变体,这些突变体包含两个经策略性定位的半胱氨酸,其中几个可以形成分子内二硫键,而其他的则不能形成这些键。使用质谱法鉴定氨基酸序列和分子内二硫键的形成。用这组apoA-I突变体评估重组高密度脂蛋白(rHDL)的形成。在四个突变体和野生型apoA-I中测量ABCA1驱动的nHDL形成。这些突变体在三个区域之一中含有半胱氨酸替代:N端,氨基酸34和55(E34C至S55C);中央结构域氨基酸104和162(F10C至H162C);以及C端,氨基酸200和233(L200C至L233C)。对突变体以存在分子内二硫键的锁定形式或半胱氨酸硫醇被烷基化阻断的未锁定形式进行研究。锁定中央结构域时仅形成少量的rHDL或nHDL。我们得出结论,N端和C端均有助于脂质获取的初始步骤,但中央结构域的开放对于颗粒形成至关重要。

相似文献

1
High-Density Lipoprotein Biogenesis: Defining the Domains Involved in Human Apolipoprotein A-I Lipidation.
Biochemistry. 2016 Sep 6;55(35):4971-81. doi: 10.1021/acs.biochem.6b00347. Epub 2016 Aug 23.
3
N-terminal mutation of apoA-I and interaction with ABCA1 reveal mechanisms of nascent HDL biogenesis.
J Lipid Res. 2019 Jan;60(1):44-57. doi: 10.1194/jlr.M084376. Epub 2018 Sep 24.
5
Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation.
J Biol Chem. 2003 Jun 20;278(25):22530-6. doi: 10.1074/jbc.M213250200. Epub 2003 Apr 10.
6
Current models of apolipoprotein A-I lipidation by adenosine triphosphate binding cassette transporter A1.
Curr Opin Lipidol. 2022 Apr 1;33(2):139-145. doi: 10.1097/MOL.0000000000000786.
8
Formation of two intramolecular disulfide bonds is necessary for ApoA-I-dependent cholesterol efflux mediated by ABCA1.
J Biol Chem. 2009 Apr 24;284(17):11293-300. doi: 10.1074/jbc.M900580200. Epub 2009 Mar 3.
9
Lipid-free Apolipoprotein A-I Structure: Insights into HDL Formation and Atherosclerosis Development.
Arch Med Res. 2015 Jul;46(5):351-60. doi: 10.1016/j.arcmed.2015.05.012. Epub 2015 Jun 3.

引用本文的文献

3
A Study on Multiple Facets of Apolipoprotein A1 Milano.
Appl Biochem Biotechnol. 2023 Jul;195(7):4653-4672. doi: 10.1007/s12010-023-04330-2. Epub 2023 Jan 23.
7
Interleukin-17 Drives Interstitial Entrapment of Tissue Lipoproteins in Experimental Psoriasis.
Cell Metab. 2019 Feb 5;29(2):475-487.e7. doi: 10.1016/j.cmet.2018.10.006. Epub 2018 Nov 8.
8
A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state.
Nat Struct Mol Biol. 2017 Dec;24(12):1093-1099. doi: 10.1038/nsmb.3501. Epub 2017 Nov 13.
9
Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions?
Expert Rev Proteomics. 2018 Jan;15(1):31-40. doi: 10.1080/14789450.2018.1402680. Epub 2017 Nov 13.

本文引用的文献

3
Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines.
Trends Biochem Sci. 2016 Jan;41(1):20-32. doi: 10.1016/j.tibs.2015.10.008. Epub 2015 Dec 1.
6
HDL cholesterol efflux capacity and incident cardiovascular events.
N Engl J Med. 2014 Dec 18;371(25):2383-93. doi: 10.1056/NEJMoa1409065. Epub 2014 Nov 18.
7
ABCA1 and nascent HDL biogenesis.
Biofactors. 2014 Nov-Dec;40(6):547-54. doi: 10.1002/biof.1187. Epub 2014 Oct 30.
8
Molecular mechanisms of cellular cholesterol efflux.
J Biol Chem. 2014 Aug 29;289(35):24020-9. doi: 10.1074/jbc.R114.583658. Epub 2014 Jul 29.
9
The conformation of lipid-free human apolipoprotein A-I in solution.
Biochemistry. 2013 Dec 31;52(52):9470-81. doi: 10.1021/bi401080k. Epub 2013 Dec 17.
10
The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles.
Biochim Biophys Acta. 2014 Jan;1841(1):80-7. doi: 10.1016/j.bbalip.2013.10.005. Epub 2013 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验