Lopez-Rodriguez Elena, Pascual Alicia, Arroyo Raquel, Floros Joanna, Perez-Gil Jesus
Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Complutense University of Madrid, Madrid, Spain.
Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Complutense University of Madrid, Madrid, Spain.
Biophys J. 2016 Aug 9;111(3):524-536. doi: 10.1016/j.bpj.2016.06.025.
Pulmonary surfactant is a lipoprotein complex that reduces surface tension to prevent alveolar collapse and contributes to the protection of the respiratory surface from the entry of pathogens. Surfactant protein A (SP-A) is a hydrophilic glycoprotein of the collectin family, and its main function is related to host defense. However, previous studies have shown that SP-A also aids in the formation and biophysical properties of pulmonary surfactant films at the air-water interface. Humans, unlike rodents, have two genes, SFTPA1 and SFTPA2. The encoded proteins, SP-A1 and SP-A2, differ quantitatively or qualitatively in function. It has been shown that both gene products are necessary for tubular myelin formation, an extracellular structural form of lung surfactant. The goal of this study was to investigate potential differences in the biophysical properties of surfactants containing human SP-A1, SP-A2, or both. For this purpose, we have studied for the first time, to our knowledge, the biophysical properties of pulmonary surfactant from individual humanized transgenic mice expressing human SP-A1, SP-A2, or both SP-A1 and SP-A2, in the captive bubble surfactometer. We observed that pulmonary surfactant containing SP-A1 reaches lower surface tension after postexpansion interfacial adsorption than surfactants containing no SP-A or only SP-A2. Under interfacial compression-expansion cycling conditions, surfactant films containing SP-A1 also performed better, particularly with respect to the reorganization of the films that takes place during compression. On the other hand, addition of recombinant SP-A1 to a surfactant preparation reconstituted from the hydrophobic fraction of a porcine surfactant made it more resistant to inhibition by serum than the addition of equivalent amounts of SP-A2. We conclude that the presence of SP-A1 allows pulmonary surfactant to adopt a particularly favorable structure with optimal biophysical properties.
肺表面活性物质是一种脂蛋白复合物,它可降低表面张力以防止肺泡塌陷,并有助于保护呼吸表面免受病原体侵入。表面活性物质蛋白A(SP-A)是凝集素家族的一种亲水性糖蛋白,其主要功能与宿主防御有关。然而,先前的研究表明,SP-A在气-水界面也有助于肺表面活性物质膜的形成和生物物理特性。与啮齿动物不同,人类有两个基因,即SFTPA1和SFTPA2。所编码的蛋白SP-A1和SP-A2在功能上存在数量或质量上的差异。已表明这两种基因产物对于管状髓磷脂的形成都是必需的,管状髓磷脂是肺表面活性物质的一种细胞外结构形式。本研究的目的是调查含有人类SP-A1、SP-A2或两者的表面活性物质在生物物理特性方面的潜在差异。为此,据我们所知,我们首次在俘获气泡表面张力仪中研究了表达人类SP-A1、SP-A2或同时表达SP-A1和SP-A2的个体人源化转基因小鼠的肺表面活性物质的生物物理特性。我们观察到,与不含SP-A或仅含SP-A2的表面活性物质相比,含有SP-A1的肺表面活性物质在扩张后界面吸附后达到的表面张力更低。在界面压缩-扩张循环条件下,含有SP-A1的表面活性物质膜表现也更好,特别是在压缩过程中发生的膜重组方面。另一方面,向由猪表面活性物质的疏水部分重构的表面活性物质制剂中添加重组SP-A1,使其比添加等量的SP-A2更能抵抗血清的抑制作用。我们得出结论,SP-A1的存在使肺表面活性物质能够形成具有最佳生物物理特性的特别有利的结构。