Srikar R, Suresh Dhananjay, Zambre Ajit, Taylor Kristen, Chapman Sarah, Leevy Matthew, Upendran Anandhi, Kannan Raghuraman
Department of Radiology, Medical Sciences Building, University of Missouri, Columbia, MO 65212, USA.
Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
Sci Rep. 2016 Aug 17;6:30245. doi: 10.1038/srep30245.
A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation.
已合成一种三嵌段纳米颗粒(TBN),其由包裹吉非替尼(酪氨酸激酶抑制剂(TKI))的可酶切多孔明胶纳米核组成,并经西妥昔单抗 - siRNA 偶联物进行表面功能化。将 siRNA 靶向递送至不可靶向治疗的 KRAS 突变非小细胞肺癌细胞可使细胞对 TKI 药物敏感,并为癌症治疗提供一种有效的疗法;然而,siRNA 的有效递送及其在细胞质中的释放仍然是一个重大挑战。我们已证明 TBN 可将 siRNA 有效递送至 KRAS 突变的 H23 非小细胞肺癌(NSCLC)细胞的细胞质中以敲低癌基因;随后,使其对 TKI 敏感。在没有 TKI 的情况下,纳米颗粒显示出最小的毒性,这表明细胞采用了一条平行的 GAB1 介导的存活途径。在 H23 细胞中,活化的 ERK 导致 GAB1 的丝氨酸和苏氨酸残基磷酸化,形成 GAB1 - p85 PI3K 复合物。在没有 TKI 的情况下,敲低癌基因会使 ERK 去磷酸化,并消除复合物的形成。这一事件导致 GAB1 的 Tyr627 结构域发生酪氨酸磷酸化,通过招募 SHP2 来调节 EGFR 信号传导。在有 TKI 的情况下,GAB1 - SHP2 解离发生,导致细胞死亡。这项研究的结果为治疗携带 KRAS 突变的 NSCLC 患者提供了一个有前景的平台。