Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
Angew Chem Int Ed Engl. 2016 Sep 19;55(39):11950-4. doi: 10.1002/anie.201604021. Epub 2016 Aug 17.
Ammonia-borane (AB) is an excellent material for chemical storage of hydrogen. However, the practical utilization of AB for production of hydrogen is hindered by the need of expensive noble metal-based catalysts. Here, we report Cux Co1-x O nanoparticles (NPs) facilely deposited on graphene oxide (GO) as a low-cost and high-performance catalyst for the hydrolysis of AB. This hybrid catalyst exhibits an initial total turnover frequency (TOF) value of 70.0 (H2 ) mol/(Cat-metal) mol⋅min, which is the highest TOF ever reported for noble metal-free catalysts, and a good stability keeping 94 % activity after 5 cycles. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) investigations suggested that the high catalytic performance could be attributed to the interfacial interaction between Cux Co1-x O NPs and GO. Moreover, the catalytic hydrolysis mechanism was studied by in situ XAS experiments for the first time, which reveal a significant water adsorption on the catalyst and clearly confirm the interaction between AB and the catalyst during hydrolysis.
氨硼烷 (AB) 是一种用于化学储氢的优秀材料。然而,由于需要昂贵的基于贵金属的催化剂,AB 实际用于生产氢气受到了阻碍。在这里,我们报告了在氧化石墨烯 (GO) 上容易沉积的铜钴氧化物 (Cux Co1-x O) 纳米颗粒 (NPs),作为用于 AB 水解的低成本、高性能催化剂。该混合催化剂表现出 70.0 mol/(Cat-metal) mol·min 的初始总周转率 (TOF) 值,这是无贵金属催化剂报告的最高 TOF 值,并且在 5 次循环后保持 94%的活性,具有良好的稳定性。基于同步辐射的 X 射线吸收光谱 (XAS) 研究表明,高催化性能可归因于 Cux Co1-x O NPs 和 GO 之间的界面相互作用。此外,首次通过原位 XAS 实验研究了催化水解机制,该实验揭示了催化剂上显著的水吸附,并清楚地证实了 AB 与催化剂在水解过程中的相互作用。