文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用CLARK-S时短宏基因组读数具有更高的分类敏感性。

Higher classification sensitivity of short metagenomic reads with CLARK-S.

作者信息

Ounit Rachid, Lonardi Stefano

机构信息

Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA.

出版信息

Bioinformatics. 2016 Dec 15;32(24):3823-3825. doi: 10.1093/bioinformatics/btw542. Epub 2016 Aug 18.


DOI:10.1093/bioinformatics/btw542
PMID:27540266
Abstract

UNLABELLED: The growing number of metagenomic studies in medicine and environmental sciences is creating increasing demands on the computational infrastructure designed to analyze these very large datasets. Often, the construction of ultra-fast and precise taxonomic classifiers can compromise on their sensitivity (i.e. the number of reads correctly classified). Here we introduce CLARK-S, a new software tool that can classify short reads with high precision, high sensitivity and high speed. AVAILABILITY AND IMPLEMENTATION: CLARK-S is freely available at http://clark.cs.ucr.edu/ CONTACT: stelo@cs.ucr.eduSupplementary information: Supplementary data are available at Bioinformatics online.

摘要

未标注:医学和环境科学领域中宏基因组学研究数量的不断增加,对用于分析这些非常大的数据集的计算基础设施提出了越来越高的要求。通常,构建超快速且精确的分类器可能会在其灵敏度(即正确分类的读数数量)上有所妥协。在此,我们介绍CLARK-S,这是一种能够以高精度、高灵敏度和高速度对短读数进行分类的新软件工具。 可用性和实现方式:CLARK-S可从http://clark.cs.ucr.edu/免费获取。联系方式:stelo@cs.ucr.edu补充信息:补充数据可在《生物信息学》在线获取。

相似文献

[1]
Higher classification sensitivity of short metagenomic reads with CLARK-S.

Bioinformatics. 2016-12-15

[2]
CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers.

BMC Genomics. 2015-3-25

[3]
MetaCache: context-aware classification of metagenomic reads using minhashing.

Bioinformatics. 2017-12-1

[4]
A novel data structure to support ultra-fast taxonomic classification of metagenomic sequences with k-mer signatures.

Bioinformatics. 2018-1-1

[5]
NBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads.

Bioinformatics. 2010-11-8

[6]
Metagenomic binning through low-density hashing.

Bioinformatics. 2019-1-15

[7]
Targeted domain assembly for fast functional profiling of metagenomic datasets with S3A.

Bioinformatics. 2020-7-1

[8]
Scalable metagenomics alignment research tool (SMART): a scalable, rapid, and complete search heuristic for the classification of metagenomic sequences from complex sequence populations.

BMC Bioinformatics. 2016-7-28

[9]
Large-scale machine learning for metagenomics sequence classification.

Bioinformatics. 2016-4-1

[10]
MetaSpark: a spark-based distributed processing tool to recruit metagenomic reads to reference genomes.

Bioinformatics. 2017-4-1

引用本文的文献

[1]
Metagenomic profiling of gut microbime: associating their role with the advancement of diabetic nephropathy.

Antonie Van Leeuwenhoek. 2025-8-22

[2]
OCTOPUS: Disk-based, Multiplatform, Mobile-friendly Metagenomics Classifier.

AMIA Annu Symp Proc. 2025-5-22

[3]
A review of neural networks for metagenomic binning.

Brief Bioinform. 2025-3-4

[4]
Addressing the dynamic nature of reference data: a new nucleotide database for robust metagenomic classification.

mSystems. 2025-4-22

[5]
An integrated strain-level analytic pipeline utilizing longitudinal metagenomic data.

Microbiol Spectr. 2024-11-5

[6]
Memory-bound -mer selection for large and evolutionarily diverse reference libraries.

Genome Res. 2024-10-11

[7]
Application and Comparison of Machine Learning and Database-Based Methods in Taxonomic Classification of High-Throughput Sequencing Data.

Genome Biol Evol. 2024-5-2

[8]
OCTOPUS: Disk-based, Multiplatform, Mobile-friendly Metagenomics Classifier.

bioRxiv. 2024-8-10

[9]
Comparative analysis of metagenomic classifiers for long-read sequencing datasets.

BMC Bioinformatics. 2024-1-11

[10]
StrainIQ: A Novel -Gram-Based Method for Taxonomic Profiling of Human Microbiota at the Strain Level.

Genes (Basel). 2023-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索