Suppr超能文献

液相剥离 MoS2 纳米片与碳纳米管复合用于高体积/面容量钠离子电池。

Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries.

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou 215123, China.

School of Physics, CRANN and AMBER Centers, Trinity College Dublin , Dublin 2, Ireland.

出版信息

ACS Nano. 2016 Sep 27;10(9):8821-8. doi: 10.1021/acsnano.6b04577. Epub 2016 Aug 23.

Abstract

The search for high-capacity, low-cost electrode materials for sodium-ion batteries is a significant challenge in energy research. Among the many potential candidates, layered compounds such as MoS2 have attracted increasing attention. However, such materials have not yet fulfilled their true potential. Here, we show that networks of liquid phase exfoliated MoS2 nanosheets, reinforced with 20 wt % single-wall carbon nanotubes (SWNTs), can be formed into sodium-ion battery electrodes with large gravimetric, volumetric, and areal capacity. The MoS2/SWNT composite films are highly porous, electrically conductive, and mechanically robust due to its percolating carbon nanotube network. When directly employed as the working electrode, they exhibit a specific capacity of >400 mAh/g and volumetric capacity of ∼650 mAh/cm(3). Their mechanical stability allows them to be processed into free-standing films with tunable thickness up to ∼100 μm, corresponding to an areal loading of 15 mg/cm(2). Their high electrical conductivity allows the high volumetric capacity to be retained, even at high thickness, resulting in state-of-the-art areal capacities of >4.0 mAh/cm(2). Such values are competitive with their lithium-ion counterparts.

摘要

寻找用于钠离子电池的高容量、低成本电极材料是能源研究中的一个重大挑战。在许多潜在的候选材料中,层状化合物如 MoS2 引起了越来越多的关注。然而,这类材料尚未发挥其真正的潜力。在这里,我们展示了通过液相剥离 MoS2 纳米片形成的网络,并用 20wt%的单壁碳纳米管(SWNTs)增强,可以制成具有大重量、体积和面积容量的钠离子电池电极。由于其碳纳米管的渗透网络,MoS2/SWNT 复合薄膜具有高多孔性、导电性和机械强度。当直接用作工作电极时,它们表现出 >400mAh/g 的比容量和 ∼650mAh/cm3 的体积容量。其机械稳定性允许将其加工成具有可调厚度的独立薄膜,厚度高达 ∼100μm,对应的面载量为 15mg/cm2。其高导电性允许在高厚度下保持高体积容量,从而实现了超过 4.0mAh/cm2 的最先进的面载量。这些值与锂离子电池相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验