Zanella Alberto, Salerno Domenico, Scaravilli Vittorio, Giani Marco, Castagna Luigi, Magni Federico, Carlesso Eleonora, Cadringher Paolo, Bombino Michela, Grasselli Giacomo, Patroniti Nicolò, Pesenti Antonio
Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan 20122 (MI), Italy; Dipartimento di Fisiopatologia medico-chirurgica e dei trapianti, Università degli Studi di Milano, Via Francesco Sforza 35, Milan 20122 (MI), Italy.
School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, Monza 20900 (MB), Italy.
J Crit Care. 2016 Dec;36:178-186. doi: 10.1016/j.jcrc.2016.07.008. Epub 2016 Jul 15.
To develop a mathematical model of oxygenation during venovenous extracorporeal membrane oxygenation (vv-ECMO).
Total oxygen consumption, cardiac output, blood flow, recirculation, intrapulmonary shunt, hemoglobin, natural lung, and membrane lung oxygen fractions were chosen as inputs. Content, partial pressure, and hemoglobin saturation of oxygen in arterial, venous, pulmonary, and extracorporeal blood were outputs. To assess accuracy and predictive power of the model, we retrospectively analyzed data of 25 vv-ECMO patients. We compiled 2 software (with numerical, 2D and 3D graphical outputs) to study the impact of each variable on oxygenation.
The model showed high accuracy and predictive power. Raising blood flow and oxygen fraction to the membrane lung or reducing total oxygen consumption improves arterial and venous oxygenation, especially in severe cases; raising oxygen fraction to the natural lung improves oxygenation only in milder cases; raising hemoglobin always improves oxygenation, especially in the venous district; recirculation fraction severely impairs oxygenation. In severely ill patients, increasing cardiac output worsens arterial oxygenation but enhances venous oxygenation. Oxygen saturation of ECMO inlet is critical to evaluate the appropriateness of oxygen delivery.
The model with the software can be a useful teaching tool and a valuable decision-making aid for the management of hypoxic patients supported by vv-ECMO.
建立静脉 - 静脉体外膜肺氧合(vv - ECMO)期间氧合的数学模型。
选择总氧耗量、心输出量、血流量、再循环、肺内分流、血红蛋白、天然肺和膜肺氧分数作为输入参数。动脉血、静脉血、肺血和体外循环血中氧的含量、分压和血红蛋白饱和度作为输出参数。为评估该模型的准确性和预测能力,我们回顾性分析了25例接受vv - ECMO治疗患者的数据。我们编写了2个软件(具有数值、二维和三维图形输出)来研究每个变量对氧合的影响。
该模型显示出较高的准确性和预测能力。增加血流量和膜肺氧分数或降低总氧耗量可改善动脉和静脉氧合,尤其是在严重病例中;增加天然肺氧分数仅在较轻病例中改善氧合;增加血红蛋白总是能改善氧合,尤其是在静脉区域;再循环分数严重损害氧合。在重症患者中,增加心输出量会使动脉氧合恶化,但会增强静脉氧合。ECMO入口处的氧饱和度对于评估氧输送的适宜性至关重要。
该模型及其软件可成为vv - ECMO支持下低氧患者管理中有用的教学工具和有价值的决策辅助工具。